共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Colin M. -P. Dorthu F. Duby C. Remacle M. Dinant M. -R. Wolwertz C. Duyckaerts F. Sluse R. F. Matagne 《Molecular & general genetics : MGG》1995,249(2):179-184
Mitochondrial mutants of the green alga Chlamydomonas reinhardtii that are inactivated in the cytochrome pathway of respiration have previously been isolated. Despite the fact that the alternative oxidase pathway is still active the mutants have lost the capacity to grow heterotrophically (dark + acetate) and display reduced growth under mixotrophic conditions (light + acetate). In crosses between wild-type and mutant cells, the meiotic progeny only inherit the character transmitted by the mt
– parent, which indicates that the mutations are located in the 15.8 kb linear mitochondrial genome. Two new mutants (dum-18 and dum-19) have now been isolated and characterized genetically, biochemically and at the molecular level. In addition, two previously isolated mutants (dum-11 and dum-15) were characterized in more detail. dum-11 contains two types of deleted mitochondrial DNA molecules: 15.1 kb monomers lacking the subterminal part of the genome, downstream of codon 147 of the apocytochrome b (COB) gene, and dimers resulting from head-to-head fusion of asymmetrically deleted monomers (15.1 and 9.5 kb DNA molecules, respectively). As in the wild type, the three other mutants contain only 15.8 kb mitochondrial DNA molecules. dum-15 is mutated at codon 140 of the COB gene, a serine (TCT) being changed into a tyrosine (TAC). dum-18 and dum-19 both inactivate cytochrome c oxidase, as a result of frameshift mutations (addition or deletion of 1 bp) at codons 145 and 152, respectively, of the COX1 gene encoding subunit I of cytochrome c oxidase. In a total of ten respiratory deficient mitochondrial mutants characterized thus far, only mutations located in COB or COXI have been isolated. The possibility that the inactivation of the other mitochondrial genes is lethal for the cells is discussed. 相似文献
2.
3.
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e− carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6. 相似文献
4.
5.
Reconstitution of plastoquinone in the D1/D2/cytochrome b-559 photosystem II reaction centre complex
Reconstitution of plastoquinone in the photosystem II D1/D2/cytochrome b-559 reaction centre complex, in the presence of the detergent Triton X-100, is reported. Illumination of the reconstituted system results in the reduction of cytochrome b-559, the process being partly herbicide-sensitive. In addition, the reconstitution of plastoquinone results in the ability of the isolated reaction centre to catalyse the photoreduction of 2,6-dichlorophenolindophenol in the presence of the exogenous electron donor diphenylcarbazide. 相似文献
6.
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway. 相似文献
7.
Shinji Tamura Sumio Kawata Toshihiro Sugiyama Seiichiro Tarui 《Biochimica et Biophysica Acta (BBA)/General Subjects》1987,926(3)
To study the modulation of the reductive metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by microsomal cytochrome b5, formation of 2-chloro-1,1,1-trifluoroethane (CTE) and 2-chloro-1,1-difluoroethylene (CDE), major reduced metabolites of halothane, was analyzed in vivo and in vitro. Rats were pretreated with both malotilate (diisopropyl-1,3-dithiol-2-ylidenemalonate) and sodium phenobarbital (malotilate-treated rats) or only with sodium phenobarbital (control rats). The microsomes of malotilate-treated rats had significantly more cytochrome b5 than the controls, whereas the cytochrome P-450 content was not different between the two groups. At the end of 2-h exposure to 1% halothane in 14% oxygen, the ratio of CDE to CTE in arterial blood was significantly higher in malotilate-treated rats than in the controls. Under anaerobic conditions, the formation of CDE and the ratio of CDE to CTE were significantly greater in microsomal preparations of malotilate-treated rats than those of the controls. In a reconstituted system containing cytochrome P-450PB purified from rabbit liver, addition of cytochrome b5 to the system enhanced the formation of CDE and increased the ratio of CDE to CTE. These results suggested that cytochrome b5 enhances the formation ratio of CDE to CTE by stimulating the supply of a second electron to cytochrome P-450, which might reduce radical reactions in the reductive metabolism of halothane. 相似文献
8.
Cyanophora paradoxa is a flagellated protozoan which possesses unusual, chloroplast-like organelles referred to as cyanelles. The psbE and psbF genes, which encode the two apoprotein subunits of cytochrome b-559, have been cloned from the cyanelle genome of C. paradoxa. The complete nucleotide sequences of these genes and their flanking sequences were determined by the chain-termination, dideoxy method. The psbE gene is composed of 75 codons and predicts a polypeptide of 8462 Da that is seven to nine residues smaller than most other psbE gene products. The psbF gene consists of 43 codons and predicts a polypeptide of 4761 Da. Two open reading frames, whose sequences are highly conserved among cyanobacteria and numerous higher plants, were located in the nucleotide sequence downstream from the psbF gene. The first open reading frame, denoted psbI, is composed of 39 codons, while the second open reading frame, denoted psbJ, is composed of 41 codons. The predicted amino acid sequences of the psbI and psbJ gene products predict proteins of 5473 and 3973 Da respectively. These proteins are probably integral membrane proteins anchored in the membrane by a single, transmembrane alpha helix. The psbEFIJ genes are probably co-transcribed and constitute an operon as found for other organisms. Each of the four genes is preceded by a polypurine sequence which resembles the consensus ribsosome binding sequences for Escherichia coli. 相似文献
9.
Four genes specifically expressed during gametogenesis of Chlamydomonas reinhardtii have been cloned and their expression patterns analyzed. mRNAs encoded by these gamete-specific genes (gas) were absent or present only at very low levels in vegetative cells and mature zygotes. In young zygotes 2 h after gamete fusion, the mRNAs of three gas genes still persisted. The gas mRNAs accumulated during gametic differentiation. The temporal patterns of accumulation of individual mRNAs differed; some started to increase early during gametogenesis, others accumulated in the late phase. The accumulation of one of the late mRNAs (gas28) was stricly light-dependent. To illustrate the utility of the genes cloned in the analysis of sexual differentiation in Chlamydomonas reinhardtii we show that in a gametogenesis-defective mutant, the expression of late genes is prevented while that of early genes is normal. 相似文献
10.
【目的】为研究莱茵衣藻(Chlamydomonas reinhardtii)泛素结合酶(ubiquitin-conjugating enzymes,E2)CrUBC23在莱茵衣藻油脂代谢中的作用,为高产油微藻基因工程改良和揭示藻类油脂合成及代谢调控机理奠定基础。【方法】qRT-PCR分析莱茵衣藻在低氮、低磷胁迫下泛素结合酶CrUBC23表达情况;克隆CrUBC23同源基因干涉片段和全长基因,构建RNAi干涉载体和过量表达载体,转化莱茵衣藻并检测生物量和油脂含量;构建CrUBC23-GFP融合表达载体,用农杆菌浸染洋葱表皮细胞进行亚细胞定位。【结果】莱茵衣藻在低氮、低磷胁迫下CrUBC23基因表达量显著增加,增加幅度分别为正常培养的4.98–5.80倍和1.85–5.20倍。RNAi干扰结果显示,转基因藻细胞中性脂含量降低5.5%,总脂含量降低3.16%–17.6%。过量表达结果显示,转基因藻细胞中性脂含量增加8.8%,总脂含量增加4.51%–14.03%。【结论】CrUBC23正向调控莱茵衣藻油脂代谢,该基因定位于细胞核。 相似文献
11.
Khajamohiddin Syed Chandramohan Kattamuri Thomas B. Thompson Jagjit S. Yadav 《Archives of biochemistry and biophysics》2011,(1):26
Two central redox enzyme systems exist to reduce eukaryotic P450 enzymes, the P450 oxidoreductase (POR) and the cyt b5 reductase–cyt b5. In fungi, limited information is available for the cyt b5 reductase–cyt b5 system. Here we characterized the kinetic mechanism of (cyt b5r)–cyt b5 redox system from the model white-rot fungus Phanerochaete chrysosporium (Pc) and made a quantitative comparison to the POR system. We determined that Pc-cyt b5r followed a “ping-pong” mechanism and could directly reduce cytochrome c. However, unlike other cyt b5 reductases, Pc-cyt b5r lacked the typical ferricyanide reduction activity, a standard for cyt b5 reductases. Through co-expression in yeast, we demonstrated that the Pc-cyt b5r–cyt b5 complex is capable of transferring electrons to Pc-P450 CYP63A2 for its benzo(a)pyrene monooxygenation activity and that the efficiency was comparable to POR. In fact, both redox systems supported oxidation of an estimated one-third of the added benzo(a)pyrene amount. To our knowledge, this is the first report to indicate that the cyt b5r–cyt b5 complex of fungi is capable of transferring electrons to a P450 monooxygenase. Furthermore, this is the first eukaryotic quantitative comparison of the two P450 redox enzyme systems (POR and cyt b5r–cyt b5) in terms of supporting a P450 monooxygenase activity. 相似文献
12.
Birgit Pelzer-Reith Susanne Freund Claus Schnarrenberger Hitome Yatsuki Katsuji Hori 《Molecular & general genetics : MGG》1995,248(4):481-486
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome. 相似文献
13.
Richard K. Chain 《FEBS letters》1985,180(2)
The isolation of a cytochrome b6-f complex from spinach, which is depleted of plastoquinone (and lipid), is reported. The depleted complex no longer functions as a plastoquinol-plastocyanin oxidoreductase but can be reconstituted with plastoquinone and exogenous lipids. The lipid classes digalactosyldiacylglycerol, phosphatidylglycerol and phosphatidylcholine were active in reconstitution while monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol were not. Neither plastoquinone nor lipid alone fully reconstitutes electron transport in the depleted complex. Saturation of plastoquinol-plastocyanin oxidoreductase activity in the depleted complex occurs at 1 plastoquinone per cytochrome f. 相似文献
14.
The redox potential of cytochrome b559 (Cyt b559) in the D1-D2-Cyt b559 complex from spinach has been determined to be +90+/-2mV vs. SHE at pH 6.0, by thin-layer cell spectroelectrochemistry for the first time. The redox potential, corresponding uniquely to the so-called "low-potential form", exhibited a sigmoidal pH-dependence from pH 4.0 to 9.0, ranging from +115 to +50mV. An analysis of the pH-dependence based on model equations suggests that two histidine residues coordinating to the heme iron in the protein subunits may exert electrostatic influence on the redox potential of Cyt b559. 相似文献
15.
Antonio R. Franco Jacobo Cárdenas Emilio Fernández 《Molecular & general genetics : MGG》1987,206(3):414-418
Summary A methylammonium-resistant mutant, named hereafter strain 2170 (ma-1), was isolated for the first time from a eukaryotic phototrophic organism. Mutant 2170 from Chlamydomonas reinhardtii carries a single mendelian mutation which results in a decreased rate of uptake of both ammonium and methylammonium without being affected either in uptake of nitrate or nitrite or any of the tested enzyme activities related to ammonium assimilation. Mutant cells could not use methylammonium as nitrogen source nor excrete ammonium into the medium but they had derepressed nitrate and nitrite reductases when growing in the presence of ammonium. Mutant 2170 also exhibited a diminished methylammonium transport rate in comparison with the wild-type cells. We conclude that mutant 2170 is affected in a transport system responsible for the entrance of both ammonium and methylammonium into the cells.Abbreviations CHES
2-(N-Cyclohexylamino)ethanesulphonic acid
- MOPS
3(N-morpholine)propanesulphonic acid 相似文献
16.
为研究莱茵衣藻丝/苏氨酸蛋白激酶(silk/threonine protein kinase, STK)介导藻细胞蓝光响应的分子机制,本文对蓝光胁迫下莱茵衣藻STK突变株系crstk11(AphvIII盒反向插入stk11基因编码区)进行表型鉴定及转录组分析。表型鉴定显示,正常光(白光)下,野生型株CC5325与突变株crstk11的生长和色素含量差异较小;蓝光抑制了crstk11藻细胞生长和叶绿素合成,但显著促进类胡萝卜素积累。转录组分析显示,蓝光处理4 d,突变株(STK4) vs.野生型(wild type, WT4)共检测到差异表达基因(differential expression genes, DEGs) 860条(559个上调,301个下调)。高蓝光处理8 d,STK8 vs. WT8共获得1 088个DEGs (468个上调,620个下调)。KEGG富集分析发现,与CC5325相比,crstk11蓝光响应基因主要参与胞内光合作用催化活性、碳代谢和色素合成等。其中,上调基因包括psaA、psaB和psaC,psbA、psbB、psbC、psbD、psbH和psbL,pet... 相似文献
17.
James V. Moroney N. E. Tolbert Barbara B. Sears 《Molecular & general genetics : MGG》1986,204(2):199-203
Summary Six independently isolated mutants of Chlamydomonas reinhardtii that require elevated CO2 for photoautotrophic growth were tested by complementation analysis. These mutants are likely to be defective in some aspect of the algal concentrating mechanism for inorganic carbon as they exhibit CO2 fixation and inorganic carbon accumulation properties different from the wild-type. Four of the six mutants defined a single complementation group and appear to be defective in an intracellular carbonic anhydrase. The other two mutations represent two additional complementation groups.Abbreviations HS
high salt medium which has 13 mM phosphate at pH 6.8
- HSA
high salt plus 36 mM acetate medium
- YA
high salt medium with 4 g yeast extract per L and 36mM acetate
- Arg
arginine
- cia-
CO2 accumulation mutants that cannot grow on low CO2
- Ci
inorganic carbon (CO2+HCO
-
3
)
- CA
carbonic anhydrase
- mt
mating type
Supported in part by the McKnight Foundation and by NSF grant PCM 8005917 and published as journal article 11924 from the Michigan State Agriculatural Experiment Station 相似文献
18.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b
6
f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b
6
f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b
6
f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b
6
f complex in protecting photosystem 11 from light-induced degradation. 相似文献
19.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus. 相似文献
20.
Summary Spontaneous chlorate-resistant (CR) mutants have been isolated from Chlamydomonas reinhardtii wildtype strains. Most of them, 244, were able to grow on nitrate minimal medium, but 23 were not. Genetic and in vivo complementation analyses of this latter group of mutants indicated that they were defective either at the regulatory locus nit-2, or at the nitrate reductase (NR) locus nit-1, or at very closely linked loci. Some of these nit-1 or nit-2 mutants were also defective in pathways not directly related to nitrate assimilation, such as those of amino acids and purines. Chlorate treatment of wild-type cells resulted in both a decrease in cell survival and an increase in mutant cells resistant to a number of different chemicals (chlorate, methylammonium, sulphanilamide, arsenate, and streptomycin). The toxic and mutagenic effects of chlorate in minimal medium were not found when cells were grown either in darkness or in the presence of ammonium, conditions under which nitrate uptake is drastically inhibited. Chlorate was also able to induce reversion of nit
– mutants of C. reinhardtii, but failed to produce His
+ revertants or Arar mutants in the BA-13 strain of Salmonella typhimurium. In contrast, chlorate treatment induced mutagenesis in strain E1F1 of the phototrophic bacterium Rhodobacter capsulatus. Genetic analyses of nitrate reductase-deficient CR mutants of C. reinhardtii revealed two types of CR, to low (1.5 mM) and high (15 mM) chlorate concentrations. These two traits were recessive in heterozygous diploids and segregated in genetic crosses independently of each other and of the nit-1 and nit-2 loci. Three her loci and four lcr loci mediating resistance to high (HC) and low (LC) concentrations of chlorate were identified. Mutations at the nit-2 locus, and deletions of a putative locus for nitrate transport were always epistatic to mutations responsible for resistance to either LC or HC. In both nit
+ and nit
– chlorate-sensitive (CS) strains, nitrate and nitrite gave protection from the toxic effect of chlorate. Our data indicate that in C. reinhardtii chlorate toxicity is primarily dependent on the nitrate transport system and independent of the existence of an active NR enzyme. At least seven loci unrelated to the nitrate assimilation pathway and mediating CR are thought to control indirectly the efficiency of the nitrate transporter for chlorate transport. In addition, chlorate appears to be a mutagen capable of inducing a wide range of mutations unrelated to the nitrate assimilation pathway. 相似文献