首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

2.
3.
《Organogenesis》2013,9(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

4.
Yan Li  Chunhui Xu  Teng Ma 《Organogenesis》2014,10(2):159-163
Pluripotent stem cells (PSCs) have the ability to spontaneously generate structured tissues in vitro reminiscent of embryonic tissue development. Recently, complex organoids such as cortical tissues, cerebral brain organoids, optical cups, intestinal tissues, and liver buds have been generated from PSCs derived from healthy individuals and patients with genetic diseases, providing powerful tools to understand morphogenesis and disease pathology. This article highlights recent advances in the state-of-art generation of organoids from PSCs, possible signaling pathways and mechanisms involved in organogenesis, and the understanding of extracellular microenvironment. Challenges involved in the organoid generation such as increasing organoid size, enhancing the tissue complexity, and improving functional maturation are also discussed.  相似文献   

5.

Background

Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress.

Methods

hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons.

Results

Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved.

Conclusion

hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads.

General significance

Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.  相似文献   

6.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

7.
小鼠的成纤维细胞通过转染四种转录因子(Oct3/4、Sox2、c-Myc和K1F4)可以被诱导转变成类似胚胎干细胞的多能性干细胞,称之为诱导型多能干细胞(induced pluripotent stem cell,iPS),这种多能干细胞在细胞形态、增殖速率、致瘤性、基因表达以及形成嵌合小鼠的能力上与胚胎干细胞有许多相似之处,将来可能成为胚胎干细胞在临床应用中的替代。本文综述了iPS相关的几种转录因子,及其在重编程过程中的作用以及iPS的发展前景。  相似文献   

8.
吴昭  成璐  肖磊 《生命科学》2009,(5):658-662
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。  相似文献   

9.
徐燕宁  关娜  张庆华  雷蕾 《生命科学》2008,20(2):231-236
人类的胚胎干细胞(embryonic stem cells,ES cells)可以用来治疗很多疾病,但是如果通过核移植来获得与供体或者患者相匹配的ES细胞,就会受到人卵母细胞来源等条件的制约。这就促使了将体细胞重编程为多潜能细胞这样一种技术策略的发展,其中包括将分化细胞与ES细胞融合,在卵细胞、ES细胞或多潜能癌细胞的抽提物中孵育,强制多潜能因子过表达等具体的方法。通过这些途径引出了一些核功能的重编程以及相应的DNA甲基化修饰、组蛋白翻译后修饰,使体细胞表达特定的多潜能因子,转变为类似胚胎干细胞的多潜能细胞。  相似文献   

10.
Induced pluripotent stem (iPS) cells have the pluripotency to differentiate into broad spectrum derivatives of all three embryonic germ layers. However, the in vitro organ differentiation potential of iPS cells to organize a complex and functional “organ” has not yet been demonstrated. Here, we demonstrate that mouse iPS cells have the ability to organize a gut-like organ with motor function in vitro by a hanging drop culture system. This “induced gut (iGut)” exhibited spontaneous contraction and highly coordinated peristalsis accompanied by a transportation of contents. Ultrastructural analysis identified that the iGut had large lumens surrounded by three distinct layers (epithelium, connective tissue and musculature). Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICCs, enteric pacemaker cells), was observed in the wall of the lumen and formed a distinct and dense network. The neurofilament immunoreactivity was identified to form large ganglion-like structures and dense neuronal networks. The iGut was composed of all the enteric components of three germ layers: epithelial cells (endoderm), smooth muscle cells (mesoderm), ICCs (mesoderm), and enteric neurons (ectoderm). This is the first report to demonstrate the in vitro differentiation potential of iPS cells into particular types of functional “organs.” This work not only contributes to understanding the mechanisms of incurable gut disease through disease-specific iPS cells, but also facilitates the clinical application of patient-specific iPS cells for novel therapeutic strategies such as patient-specific “organ” regenerative medicine in the future.  相似文献   

11.
Isao Hori 《Hydrobiologia》1991,227(1):19-24
Distribution of the cytoplasmic components in planarian epidermal cells is highly polarized, just as in vertebrate epithelia. Differentiating epidermal cells of the planarian Dugesia japonica Ichikawa et Kawakatsu were found to have relatively conspicuous accumulations of microtubules in their apical cytoplasm. When colchicine, a microtubule-disrupting drug, was applied to regenerating worms, it reversibly disorganized the polarity of differentiating epidermal cells. Cytochalasin B, which depolymerizes actin filaments, had no significant effect on the polarization, however. Tubulin could be localized by immunocytochemistry in the cytoplasm of differentiating epidermal cells; this reaction was inhibited by treatment with colchicine for 20 h. These observations indicate that microtubules play a role in establishing polarity during cell differentiation.  相似文献   

12.
体细胞诱导为多能干细胞的最新进展   总被引:3,自引:0,他引:3  
周一叶  曾凡一 《生命科学》2008,20(3):425-430
2007年11-12月,Cell、Science和Nature发表一系列体外诱导人类体细胞转变为多能干细胞的论文。来自日本和美国的研究小组利用慢病毒载体分别将Oct-4、Sox2、C-Myc、Klf4和Oct-4、Sox2、Nanog、Lin28两套基因转入人成纤维细胞,均获得类似ES细胞的克隆。小鼠诱导性多能干细胞已初步用于镰刀细胞性贫血的基因治疗。短短一年半,诱导性多能干细胞的研究和关注度呈现了爆炸式成长;体细胞重编程、去分化、多能干细胞来源等一系列热点问题再次成为大众瞩目的中心。  相似文献   

13.
Since the generation of the first induced pluripotent stem (iPS) cells, the stem cell field has grown at an unparalleled pace. Today, these cells have become the major tools in the advancement of personalized medicine. Here we review the experiments that lead to their discovery as well as the latest developments in iPS cell biology. By emphasizing the current applications and limitations of induced pluripotency, we discuss how iPS cells are shaping innovation in personalized therapies. In addition, we analyze the major landmarks in direct lineage reprogramming, a potentially faster alternative to the use of iPS cells in therapy. Finally, we present the current progress in disease modeling and future directions of the treatment of genetic disorders.  相似文献   

14.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

15.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

16.
Induced pluripotent stem (iPS) cells have potential to differentiate into T lymphocytes, however, the actual ability of iPS cells to develop into T lineages is not clear. In this study, we co-cultured iPS cells on OP9 cells expressing the Notch ligand Delta-like 1 (DL1), the iPS cells differentiated into T lymphocytes. In addition, in vitro stimulation of iPS cell-derived T lymphocytes resulted in secretion of IL-2 and IFN-γ. Moreover, adoptive transfer of iPS cell-derived T lymphocytes into Rag-deficient mice reconstituted their T cell pools. These results indicate that iPS cells are able to follow the normal program of T cell differentiation.  相似文献   

17.
In previous studies, we have shown that dorsoventral (DV) interaction evokes not only blastema formation, but also morphogenetic events similar to those that occur in regeneration. However, it is still unclear what kinds of signal molecules are involved in the DV interaction. To investigate the signal systems involved in the DV interaction, we focused on a noggin-like gene (Djnlg) identified by the planarian EST project. Djnlg is the first noggin homologue isolated from an invertebrate. In DjNLG, the positions of nine cysteine residues which may be essential for dimer formation were well conserved, but overall, the amino acid sequence of DjNLG did not show high similarity to the sequences of vertebrate Noggins. Expression of Djnlg was observed only in the proximal region of the branch structures in the brain of intact planarians, suggesting that Djnlg may have a role in pattern formation in the brain. Interestingly, transient strong expression of Djnlg was observed in the amputated region of regenerating planarians. Djnlg-expressing cells were detected beneath the muscle 9 h after amputation and were then detected in the ventral subepidermal region of the blastema. The induction of Djnlg expression by amputation was not affected by X-ray irradiation, even though the stem cells were completely eliminated, implying the existence of signal-producing cells which may provide a positional cue to the stem cells. In DV reversed grafting, expression of Djnlg was strongly induced in the DV boundary between the host and donor. These results suggest that ectopic DV interaction may induce expression of Djnlg in the positional cue-producing cells, and that it might be involved in stimulation of blastema formation as well as DV patterning of the body.  相似文献   

18.
王弘恺  ;康九红 《生命科学》2009,21(5):729-733
诱导多能干细胞(induced pluripotent stem cells,iPS细胞)不仅具有与胚胎干细胞(embryonic stem cell,ESC)相似的各项特性,相对于ESC,iPS细胞,尤其患者特异性iPS细胞还具有来源方便、不存在免疫排斥和伦理问题以及可以保留特定个体基因型等优点,为再生医学提供了可能的细胞来源。该文主要从心血管药物的筛选、疾病模型的建立、iPS细胞应用于心脏移植研究等方面入手,探讨了iPS细胞在心血管疾病研究和治疗中的现状和未来。  相似文献   

19.
20.
Developing effective drug therapies for arrhythmic diseases is hampered by the fact that the same drug can work well in some individuals but not in others. Human induced pluripotent stem (iPS) cells have been vetted as useful tools for drug screening. However, cardioactive drugs have not been shown to have the same effects on iPS cell-derived human cardiomyocytes as on embryonic stem (ES) cell-derived cardiomyocytes or human cardiomyocytes in a clinical setting. Here we show that current cardioactive drugs affect the beating frequency and contractility of iPS cell-derived cardiomyocytes in much the same way as they do ES cell-derived cardiomyocytes, and the results were compatible with empirical results in the clinic. Thus, human iPS cells could become an attractive tool to investigate the effects of cardioactive drugs at the individual level and to screen for individually tailored drugs against cardiac arrhythmic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号