首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complement system presents a powerful defense against infection and is tightly regulated to prevent damage to self by functionally equivalent soluble and membrane regulators. We describe complement C2 receptor inhibitor trispanning (CRIT), a novel human complement regulatory receptor, expressed on hemopoietic cells and a wide range of tissues throughout the body. CRIT is present in human parasites through horizontal transmission. Serum complement component C2 binds to the N-terminal extracellular domain 1 of CRIT, which, in peptide form, blocks C3 convertase formation and complement-mediated inflammation. Unlike C1 inhibitor, which inhibits the cleavage of C4 and C2, CRIT only blocks C2 cleavage but, in so doing, shares with C1 inhibitor the same functional effect, of preventing classical pathway C3 convertase formation. Ab blockage of cellular CRIT reduces inhibition of cytolysis, indicating that CRIT is a novel complement regulator protecting autologous cells.  相似文献   

2.
Inal JM  Sim RB 《FEBS letters》2000,470(2):131-134
Human complement regulatory (also called inhibitory) proteins control misdirected attack of complement against autologous cells. Trypanosome and schistosome parasites which survive in the host vascular system also possess regulators of human complement. We have shown Sh-TOR, a protein with three predicted transmembrane domains, located on the Schistosoma parasite surface, to be a novel complement regulatory receptor. The N-terminal extracellular domain, Sh-TOR-ed1, binds the complement protein C2 from human serum and specifically interacts with the C2a fragment. As a result Sh-TOR-ed1 pre-incubated with C2 inhibits classical pathway (CP)-mediated haemolysis of sheep erythrocytes in a dose-dependent manner. In CP-mediated complement activation, C2 normally binds to C4b to form the CP C3 convertase and Sh-TOR-ed1 has short regions of sequence identity with a segment of human C4b. We propose the more appropriate name for TOR of CRIT (complement C2 receptor inhibitory trispanning).  相似文献   

3.
Complement C2 receptor inhibitor trispanning (CRIT) is a Schistosoma protein that binds the human complement protein, C2. We recently showed that peptides based on the ligand binding region of CRIT inhibit the classical pathway (CP) of complement activation in human serum, using hemolytic assays and so speculated that on the parasite surface CRIT has the function of evading human complement. We now show that in vitro the C2-binding 11-aa C terminus of the first extracellular domain of CRIT, a 1.3-kDa peptide termed CRIT-H17, inhibits CP activation in a species-specific manner, inhibiting mouse and rat complement but not that from guinea pig. Hitherto, the ability of CRIT to regulate complement in vivo has not been assessed. In this study we show that by inhibiting the CP, CRIT-H17 is able to reduce immune complex-mediated inflammation (dermal reversed passive Arthus reaction) in BALB/c mice. Upon intradermal injection of CRIT-H17, and similarly with recombinant soluble complement receptor type 1, there was a 41% reduction in edema and hemorrhage, a 72% reduction in neutrophil influx, and a reduced C3 deposition. Furthermore, when H17 was administered i.v. at a 1 mg/kg dose, inflammation was reduced by 31%. We propose that CRIT-H17 is a potential therapeutic agent against CP complement-mediated inflammatory tissue destruction.  相似文献   

4.
The C3a receptor (C3aR) is expressed on most human peripheral blood leukocytes with the exception of resting lymphocytes, implying a much higher pathophysiological relevance of the anaphylatoxin C3a as a proinflammatory mediator than previously thought. The response to this complement split product must be tightly regulated in situations with sustained complement activation to avoid deleterious effects caused by overactivated inflammatory cells. Receptor internalization, an important control mechanism described for G protein-coupled receptors, was investigated. Using rabbit polyclonal anti-serum directed against the C3aR second extracellular loop, a flow cytometry-based receptor internalization assay was developed. Within minutes of C3a addition to human granulocytes, C3aR almost completely disappeared from the cell surface. C3aR internalization could also be induced by PMA, an activator of protein kinase C. Similarly, monocytes, the human mast cell line HMC-1, and differentiated monocyte/macrophage-like U937-cells exhibited rapid agonist-dependent receptor internalization. Neither C5a nor FMLP stimulated any cross-internalization of the C3aR. On the contrary, costimulation of granulocytes with C5a, but not FMLP, drastically decreased C3aR internalization. This effect could be blocked by a C5aR-neutralizing mAb. HEK293-cells transfected with the C3aR, with or without Galpha16, a pertussis toxin-resistant G protein alpha subunit required for C3aR signal transduction in these cells, did not exhibit agonist-dependent C3aR internalization. Additionally, preincubation with pertussis toxin had no effect on C3a-induced internalization on PMNs. C3aR internalization is a rapid negative control mechanism and is influenced by the C5aR pathway.  相似文献   

5.
Guo Q  Subramanian H  Gupta K  Ali H 《PloS one》2011,6(7):e22559

Background

The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced C3aR phosphorylation. However, the roles of these GRKs on the regulation of C3aR signaling and mediator release in human mast cells remain unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of GRK2, GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and LAD2, that endogenously express C3aR. Silencing GRK2 or GRK3 expression caused a more sustained Ca2+ mobilization, attenuated C3aR desensitization, and enhanced degranulation as well as ERK1/2 phosphorylation when compared to shRNA control cells. By contrast, GRK5 or GRK6 knockdown had no effect on C3aR desensitization, but caused a significant decrease in C3a-induced mast cell degranulation. Interestingly, GRK5 or GRK6 knockdown rendered mast cells more responsive to C3a for ERK1/2 phosphorylation.

Conclusion/Significance

This study demonstrates that GRK2 and GRK3 are involved in C3aR desensitization. Furthermore, it reveals the novel finding that GRK5 and GRK6 promote C3a-induced mast cell degranulation but inhibit ERK1/2 phosphorylation via C3aR desensitization-independent mechanisms. These findings thus reveal a new level of complexity for C3aR regulation by GRKs in human mast cells.  相似文献   

6.
Complement C2 receptor inhibitor trispanning (CRIT) of the Schistosoma parasite binds human C2 via the C2a segment. The receptor in vivo functions as C2 decoy receptor by directly competing with C4b for binding to C2. As a result, CRIT is able to limit the extent of classical pathway (CP) C3 convertase formation. We report that the CRIT-extracellular domain 1 (ed1) peptide inhibits CP-mediated complement activation with an ICH(50) of approximately 0.1 microM, the C-terminal 11 aa of CRIT-ed1, named H17, even more effectively. The beta-chain region F222-Y232 of C4 shares 55% identity and 73% similarity with H17. Peptides based on this region also inhibit CP in a dose-dependent manner. As further evidence of C2 binding we showed CRIT-ed1 peptides and homologous C4 beta-chain peptides to inhibit complement in C2 hemolytic assays. We have predicted C4 beta-c F222-Y232 as a C2 binding site which we have termed the CRIT-ed1 domain, and the sequence [F/H]EVKX(4/5)P as a consensus C2-binding sequence. Anti-CRIT-ed1 cross-reacts with the C4 beta-chain and F222EVKITPGKPY232 appears to be the key epitope recognized by this Ab. Furthermore, anti-CRIT-ed1 was found to inhibit CP activation in a total hemolytic assay. We believe that Schistosoma CRIT-ed1, as well as C4 beta-chain peptides based on the CRIT-ed1 domain, function as interface peptides. These peptides, based on C2-binding sequences in CRIT, or C4, competitively inhibit the binding of C2 to C4b and thus limit the activation of C. The C4 peptides, unlike CRIT-ed1, did not inhibit the cleavage of C2 by C1s.  相似文献   

7.
The human complement 5a (C5a) anaphylatoxin receptor (CD88) is a G protein-coupled receptor involved in innate host defense and inflammation. Upon agonist binding, C5a receptor (C5aR) undergoes rapid phosphorylation on the six serine residues present in the C-terminal region followed by desensitization and internalization. Using confocal immunofluorescence microscopy and green fluorescent protein-tagged beta-arrestins (beta-arr 1- and beta-arr 2-EGFP) we show a persistent complex between C5aR and beta-arrestins to endosomal compartments. Serine residues in the C5aR C terminus were identified that control the intracellular trafficking of the C5aR-arrestin complex in response to C5a. Two phosphorylation mutants C5aR-A(314,317,327,332) and C5aR-A(314,317,332,334), which are phosphorylated only on Ser(334)/Ser(338) and Ser(327)/Ser(338), respectively, recruited beta-arr 1 and were internalized. In contrast, the phosphorylation-deficient receptors C5aR-A(334,338) and C5aR-A(332,334,338) were not internalized even though observations by confocal microscopy indicated that beta-arr 1-EGFP and/or beta-arr 2-EGFP could be recruited to the plasma membrane. Altogether the results indicate that C5aR activation is able to promote a loose association with beta-arrestins, but phosphorylation of either Ser(334)/Ser(338) or Ser(327)/Ser(338) is necessary and sufficient for the formation of a persistent complex. In addition, it was observed that C5aR endocytosis was inhibited by the expression of the dominant negative mutants of dynamin (K44E) and beta-arrestin 1 (beta-arr 1-(319-418)-EGFP). Thus, the results suggest that the C5aR is internalized via a pathway dependent on beta-arrestin, clathrin, and dynamin.  相似文献   

8.
U937 cells can be induced to express receptor for complement 5a (C5aR) by sequential 2 day treatments of cells with dihydroxyvitamin D-3 (1,25(OH)2D3) followed by prostaglandin E2. We asked whether the action of prostaglandin E2 to cause maximal C5aR expression required only activation of the cAMP-dependent protein kinase (PKA). Prostaglandin E2 dose dependently activated PKA in control and 1,25(OH)2D3 treated cells; by 4 h the PKA did not respond to further prostaglandin E2 challenge. We hypothesized that prostaglandin E2 actions transduced via PKA should be complete by 4 h; i.e., C5aR induction should be equivalent in cells treated with prostaglandin E2 for 4 h and for 2 days. All cells were treated for the first 2 days with 1,25(OH)2D3 and the second 2 days with prostaglandin E2 or cAMP analogs. C5aR number was measured after 4 days total culture. 4 h pulse treatments with agents were given at the end of the 1,25(OH)2D3 treatment. Cells exposed to a 4 h pulse of prostaglandin E2 had only 68.2 +/- 4.4% the amount of C5aR seen in cells continuously exposed to prostaglandin E2. Continuous culture with a cAMP analog pair (50 microM each of 8-thiomethyl-cAMP + N6-benzoyl-cAMP), which caused a 41.7% +/- 10.8% increase PKA activation above basal, resulted in only 51% +/- 16% of the C5aR numbers seen in cells cultured for 2 days with prostaglandin E2, where PKA remained at basal activity. We therefore concluded that C5aR expression caused by prostaglandin E2 could not be ascribed entirely to duration or degree of activation of cAMP-dependent signalling pathways. We investigated the possibility that the calcium sensitive protein kinase C was involved. Cytoplasmic protein kinase C was increased 154% +/- 14% above control in cells treated with sequential 2 days treatments of 1,25(OH)2D3 and prostaglandin E2. A 147% +/- 2% increase in membrane associated protein kinase C was also seen 10 min after phorbol myristate acetate stimulation in the above treatment group. Finally, phorbol myristate acetate augmented the C5aR induction caused by cAMP analog. We propose that the mechanism of prostaglandin E2 synergism with 1,25(OH)2D3 in causing C5aR induction in U937 cells includes signal transduction not only by the cAMP cascade, but also via protein kinase C modulated pathways.  相似文献   

9.
Intestinal epithelial cells (IECs) exhibit numerous adaptations to maintain barrier function as well as play sentinel roles by expressing receptors for microbial products and antimicrobial peptides. The complement system is another important innate sensing and defense mechanism of the host against bacteria and increasing evidence shows that complement plays a role in colitis. The split component C5a is a potent proinflammatory molecule, and the C5a receptor (C5aR) CD88 has been reported on multiple cell types. Here, we examined the question of whether human colonic cell lines can detect activated complement via C5aR and what signaling pathway is critical in the subsequent responses. T84, HT29, and Caco2 cell lines all possessed mRNA and protein for C5aR and the decoy receptor C5L2. Polarized cells expressed the proteins on the apical cell membrane. C5a binding to the C5aR on human IECs activates the ERK pathway, which proved critical for a subsequent upregulation of IL-8 mRNA, increased permeability of monolayers, and enhanced proliferation of the cells. The fact that human IECs are capable of detecting complement activation in the lumen via this anaphylatoxin receptor highlights the potential for IECs to detect pathogens indirectly through complement activation and be primed to amplify the host response through heightened inflammatory mediator expression to further recruit immune cells.  相似文献   

10.
The complement anaphylatoxin C5a is a proinflammatory component of host defense that functions through two identified receptors, C5a receptor (C5aR) and C5L2. C5aR is a classical G protein-coupled receptor, whereas C5L2 is structurally homologous but deficient in G protein coupling. In human neutrophils, we show C5L2 is predominantly intracellular, whereas C5aR is expressed on the plasma membrane. Confocal analysis shows internalized C5aR following ligand binding is co-localized with both C5L2 and β-arrestin. Antibody blockade of C5L2 results in a dramatic increase in C5a-mediated chemotaxis and ERK1/2 phosphorylation but does not alter C5a-mediated calcium mobilization, supporting its role in modulation of the β-arrestin pathway. Association of C5L2 with β-arrestin is confirmed by cellular co-immunoprecipitation assays. C5L2 blockade also has no effect on ligand uptake or C5aR endocytosis in human polymorphonuclear leukocytes, distinguishing its role from that of a rapid recycling or scavenging receptor in this cell type. This is thus the first example of a naturally occurring seven-transmembrane segment receptor that is both obligately uncoupled from G proteins and a negative modulator of signal transduction through the β-arrestin pathway. Physiologically, these properties provide the possibility for additional fine-tuning of host defense.  相似文献   

11.
A newly recognized link between the complement system and adaptive immunity is that decay accelerating factor (DAF), a cell surface C3/C5 convertase regulator, exerts control over T cell responses. Extending these results, we show that cultures of Marilyn TCR-transgenic T cells stimulated with DAF-deficient (Daf1(-/-)) APCs produce significantly more IL-12, C5a, and IFN-gamma compared with cultures containing wild-type APCs. DAF-regulated IL-12 production and subsequent T cell differentiation into IFN-gamma-producing effectors was prevented by the deficiency of either C3 or C5a receptor (C5aR) in the APC, demonstrating a link between DAF, local complement activation, IL-12, and T cell-produced IFN-gamma. Bone marrow chimera experiments verified that bone marrow cell-expressed C5aR is required for optimal differentiation into IFN-gamma-producing effector T cells. Overall, our results indicate that APC-expressed DAF regulates local production/activation of C5a following cognate T cell/APC interactions. Through binding to its receptor on APCs the C5a up-regulates IL-12 production, this in turn, contributes to directing T cell differentiation toward an IFN-gamma-producing phenotype. The findings have implications for design of therapies aimed at altering pathologic T cell immunity.  相似文献   

12.
Decay-accelerating factor (DAF, CD55) is a GPI-anchored membrane protein that regulates complement activation on autologous cells. In addition to protecting host tissues from complement attack, DAF has been shown to inhibit CD4+ T cell immunity in the setting of model Ag immunization. However, whether DAF regulates natural T cell immune response during pathogenic infection is not known. We describe in this study a striking regulatory effect of DAF on the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) infection. Compared with wild-type mice, DAF knockout (Daf-1(-/-)) mice had markedly increased expansion in the spleen of total and viral Ag-specific CD8+ T cells after acute or chronic LCMV infection. Splenocytes from LCMV-infected Daf-1(-/-) mice also displayed significantly higher killing activity than cells from wild-type mice toward viral Ag-loaded target cells, and Daf-1(-/-) mice cleared LCMV more efficiently. Importantly, deletion of the complement protein C3 or the receptor for the anaphylatoxin C5a (C5aR) from Daf-1(-/-) mice reversed the enhanced CD8+ T cell immunity phenotype. These results demonstrate that DAF is an important regulator of CD8+ T cell immunity in viral infection and that it fulfills this role by acting as a complement inhibitor to prevent virus-triggered complement activation and C5aR signaling. This mode of action of DAF contrasts with that of CD59 in viral infection and suggests that GPI-anchored membrane complement inhibitors can regulate T cell immunity to viral infection via either a complement-dependent or -independent mechanism.  相似文献   

13.
The anaphylatoxin C3a is a potent chemotactic peptide and inflammatory mediator released during complement activation which binds to and activates a G-protein-coupled receptor. Molecular cloning of the C3aR has facilitated studies to identify nonpeptide antagonists of the C3aR. A chemical lead that selectively inhibited the C3aR in a high throughput screen was identified and chemically optimized. The resulting antagonist, N(2)-[(2,2-diphenylethoxy)acetyl]-L-arginine (SB 290157), functioned as a competitive antagonist of (125)I-C3a radioligand binding to rat basophilic leukemia (RBL)-2H3 cells expressing the human C3aR (RBL-C3aR), with an IC(50) of 200 nM. SB 290157 was a functional antagonist, blocking C3a-induced C3aR internalization in a concentration-dependent manner and C3a-induced Ca(2+) mobilization in RBL-C3aR cells and human neutrophils with IC(50)s of 27.7 and 28 nM, respectively. SB 290157 was selective for the C3aR in that it did not antagonize the C5aR or six other chemotactic G protein-coupled receptors. Functional antagonism was not solely limited to the human C3aR; SB 290157 also inhibited C3a-induced Ca(2+) mobilization of RBL-2H3 cells expressing the mouse and guinea pig C3aRS: It potently inhibited C3a-mediated ATP release from guinea pig platelets and inhibited C3a-induced potentiation of the contractile response to field stimulation of perfused rat caudal artery. Furthermore, in animal models, SB 290157, inhibited neutrophil recruitment in a guinea pig LPS-induced airway neutrophilia model and decreased paw edema in a rat adjuvant-induced arthritis model. This selective antagonist may be useful to define the physiological and pathophysiological roles of the C3aR.  相似文献   

14.

Background

The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10–30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells.

Conclusion/Significance

This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells.  相似文献   

15.
The complement fragment-3a (C3a) acts via a G protein-coupled C3aR and is of importance in allergic and inflammatory diseases. Recent studies suggest the presence of complement proteins in the epidermal compartment and synthesis of some of these proteins (C3, factor B, and factor H) by human primary keratinocytes (KCs) during inflammation. However, expression of C3aR and its role in human KCs is not elucidated thus far. In this study, we demonstrate the expression of C3aR on KCs as detected by quantitative real-time RT-PCR and flow cytometry. IFN-gamma and IFN-alpha strongly up-regulated the surface expression of C3aR on KCs among all other cytokines tested. After up-regulation of C3aR by IFN-gamma and IFN-alpha, we observed the induction of five genes (CCL2, CCL5, CXCL8, CXCL10, and C3) after stimulation of KCs with C3a in microarray analysis. We confirmed the induction of C3 and CCL2 at RNA and protein levels. Furthermore, incubation of C3 with skin mast cells tryptase resulted in the generation of C3 fragments with C3a activity. In conclusion, our data illustrate that epidermal KCs express functional C3aR. The increases of C3 and CCL2 synthesis by C3a and C3 activation by skin mast cell tryptase delineates a novel amplification loop of complement activation and inflammatory responses that may influence the pathogenesis of allergic/inflammatory skin diseases.  相似文献   

16.
Most G-protein-coupled receptors (GPCRs) form di(oligo)-meric structures that constitute signaling and trafficking units and might be essential for receptor functions. Cell responses to complement C5a receptor (C5aR) are tightly controlled by receptor desensitization and internalization. To examine the implication of dimerization in C5aR regulation, we generated an NH(2)-terminally modified C5aR mutant, unable to bind C5a, and a phosphorylation-deficient mutant. Neither an intact NH(2) terminus nor the presence of COOH-terminal phosphorylation sites appeared to be required for the formation of C5aR dimers. Upon C5a stimulation, mutant receptors did not internalize when individually expressed. C5a stimulation of cells that co-expressed wild type C5aR together with either unliganded or phosphorylation-deficient mutant resulted in co-internalization of mutant receptors with C5aR. Unliganded GPCRs can be cross-phosphorylated within a heterologous receptor dimer or by second messenger-activated kinases. C5a stimulation of (32)P-labeled cells that co-expressed the unliganded mutant with either C5aR or the phosphorylation-deficient mutant did not induce phosphorylation of the unliganded mutant. We can thus postulate that, in the case of C5aR, the stimulation and phosphorylation of one monomer is enough to lead to dimer internalization. The existence and functional implication of di(oligo)mer formation may be important for an accurate C5aR down-regulation in pathological conditions.  相似文献   

17.
There is accumulating evidence that the complement activation product, C5a, can orchestrate cellular immune functions. IL-27(p28/EBI3) is an emerging key player essential for regulating inflammatory responses and T cells. In this article, we report that C5a robustly suppressed IL-27(p28) gene expression and release in peritoneal macrophages. These cells from C57BL/6J mice abundantly produced IL-27(p28) after engagement of either the TLR3 (polyinosinic-polycytidylic acid) or TLR4 (LPS) receptor. Genetic deficiency of either TLR4 or LBP completely incapacitated the ability of macrophages to secrete IL-27(p28) in response to LPS. IL-27(p28)-producing macrophages also expressed the C5aR receptor, thus displaying an IL-27(p28)(+)F4/80(+)C5aR(+) phenotype. C5a suppressed IL-27(p28) in LPS-stimulated macrophages via interactions with the C5aR receptor rather than the C5L2 receptor. After endotoxemia, C5aR(-/-) mice displayed higher plasma levels of IL-27(p28) compared with C57BL/6J mice. C5a did not affect the release of IL-27(p28) or the frequency of IL-27(p28)(+)F4/80(+) macrophages after engagement of TLR3. Mechanistically, LPS activated both the NF-κB and the PI3K/Akt pathways, whereas C5a activated only the PI3K/Akt pathway. Engagement of PI3K/Akt was inhibitory for IL-27(p28) production, because PI3K/Akt pharmacologic blockade resulted in increased amounts of IL-27(p28) and reversed the suppressive effects of C5a. Blockade of PI3K/Akt in endotoxemic C57BL/6J mice resulted in higher generation of IL-27(p28). In contrast, the PI3K/Akt pathway was not involved in TLR3-mediated release of IL-27(p28). These data provide new evidence about how complement activation may selectively interfere with production of T cell regulatory cytokines by APCs in the varying contexts of either bacterial (TLR4 pathway) or viral (TLR3 pathway) infection.  相似文献   

18.
Phosphorylation of G protein-coupled receptors and the subsequent recruitment of beta-arrestin play an important role in desensitization of receptor-mediated responses, including degranulation in leukocytes. In this study, we report that receptor phosphorylation also provides a stimulatory signal for CCR ligand 2 (CCL2) production. C3a stimulated degranulation in a basophilic leukemia RBL-2H3 cell expressing wild-type C3aR or a phosphorylation-deficient mutant (DeltaST-C3aR). In contrast, C3a caused CCL2 production only in C3aR but not DeltaST-C3aR cells. Furthermore, overexpression of G protein-coupled receptor kinase 2 resulted in enhancement of both ligand-induced receptor phosphorylation and CCL2 production but inhibition of degranulation. Agonist activation of C3aR, but not DeltaST-C3aR, led to the translocation of green fluorescent protein tagged beta-arrestin 2 from the cytoplasm to the plasma membrane. These data demonstrate that receptor phosphorylation, which provides a turn off signal for degranulation, is essential for CCL2 production.  相似文献   

19.
Complement C2 receptor inhibitor trispanning (CRIT) inhibits the classical pathway (CP) C3 convertase formation by competing with C4b for the binding of C2. The C-terminal 11-amino-acid of the first CRIT-extracellular domain (CRIT-H17) has a strong homology with a sequence in the C4beta chain, which is responsible for the binding of C2. Since the CP and alternative pathway (AP) C3 convertases have many functional and structural similarities, we further investigated the effects of CRIT-H17 on the AP. The factor D-mediated cleavage of factor B (FB) was blocked by CRIT-H17. By ELISA and immunoblot, CRIT-H17 was shown to bind FB. CRIT-H17 had no decay activity on the C3bBb complex as compared to decay-accelerating factor. Binding of CRIT-H17 to FB did not interfere with the assembly of C3bB complex. In a haemolytic assay using C2-deficient serum, CRIT-H17 interfered with AP complement activation.  相似文献   

20.
Complement, NKT, and NK cells play critical roles in the first line defense against pathogens. Functional roles for both C5a receptors, that is, complement receptor C5a (C5aR) and C5a receptor-like 2 (C5L2), in sepsis have been demonstrated. However, the role of C5a in innate lymphocyte activation during sepsis remains elusive. In this article, we show that naive NKT and NK cells already express high levels of C5aR and minor levels of C5L2 mRNA, but no protein. Upon Escherichia coli-induced sepsis, we found C5aR surface expression on subpopulations of NKT and NK cells, suggesting rapid translation into C5aR protein on bacterial encounter. Importantly, significantly increased survival in the absence of C5aR, NKT, and NK cells, but not of C5L2, was associated with reduced IFN-γ and TNF-α serum levels. Sepsis induction in C5aR(+)/C5aR(-) mixed bone marrow chimeras identified cognate engagement of C5aR on NKT cells as an important factor for the recruitment of NKT cells. Furthermore, we found synergistic interaction between C5aR and TLRs enhancing the production of TNF-α and IFN-γ from NKT and NK cells in cocultures with dendritic cells. Our results identify C5aR activation as a novel pathway driving detrimental effects of NKT and NK cells during early experimental sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号