首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing and secretion of the alkaline extracellular protease (AEP) from the yeast Yarrowia lipolytica was studied by pulse-chase and immunoprecipitation experiments. Over half of newly synthesized AEP was secreted by 6 min. Over 99% of AEP activity which was external to the cytoplasmic membrane was located in the supernatant medium. Polypeptides of 55, 52, 44, 36, and 32 kilodaltons (55K, 52K, 44K, 36K, and 32K polypeptides) were immunoprecipitated from [3H]leucine-labeled cell extracts by rabbit antibodies raised against mature, secreted AEP (32K polypeptide). Experiments with tunicamycin and endoglycosidase H indicated that the 55K, 52K, and 44K polypeptides contained about 2 kilodaltons of N-linked oligosaccharide and that the 36K and 32K polypeptides contained none. Results of pulse-chase experiments did not fit a simple precursor-product relationship of 55K----52K----44K----36K----32K. In fact, maximum labeling intensity of the 52K polypeptide occurred later than for the 44K and 36K polypeptides. Secretion of polypeptides of 19 and 20 kilodaltons derived from the proregion of AEP indicated that one major processing pathway was 55K----52K----32K. The gene coding for AEP (XPR2) was cloned and sequenced. The sequence and the immunoprecipitation results suggest that AEP is originally synthesized with an additional preproI-proII-proIII amino-terminal region. Processing definitely involves cleavage(s) after pairs of basic amino acids and the addition of one N-linked oligosaccharide. Signal peptidase cleavage, dipeptidyl aminopeptidase cleavages, and at least one additional proteolytic cleavage may also be involved.  相似文献   

2.
Mutants for Saccharomycopsis lipolytica temperature sensitive for alkaline extracellular protease production, but not for growth, were isolated. Thirty-three isolates were temperature sensitive for protease production, and one (xpr-32) produced a temperature-sensitive protease. Genetic analysis indicated that xpr-32 was located in gene XPR2, and allele xpr2-7 was found to also produce a temperature-sensitive protease. None of five independently isolated xpr2 mutations affects the production of extracellular ribonucleases and acid protease(s). Diploids with zero, one, or two active alleles of the XPR2 locus were constructed, and the XPR2 locus was shown to exhibit a gene dosage effect on alkaline extracellular protease synthesis (enzyme activity/cell protein). These results suggest that the XPR2 gene is the structural gene for the alkaline extracellular protease of S. lipolytica.  相似文献   

3.
The yeast Yarrowia lipolytica secretes an alkaline extracellular protease (AEP). It is first synthesized as a precursor comprising a putative signal peptide, a stretch of 10 X-Ala or X-Pro sequences that are substrates for a dipeptidyl aminopeptidase, a large pro-region that contains a glycosylation site and two Lys-Arg sites that can be cleaved by a KEX2-like endoprotease and finally the mature protease itself. A defect in the XPR6 (KEX2-like) gene results in the secretion of an inactive proenzyme (Matoba, S., and Ogrydziak, D. M. (1989) J. Biol. Chem. 264, 6037-6043), showing that the proregion inhibits protease activity. To determine whether the proregion plays an additional role in protease secretion, we have generated deletions and point mutations in the corresponding region of the structural gene. In this paper we examine the effects of these mutations on AEP secretion and maturation and show that the proregion is essential for its secretion. All deletions affecting the proregion resulted in the intracellular accumulation of unprocessed precursors. Deletion of the glycosylation site in the proregion resulted in the production of an unglycosylated precursor that was secreted and matured correctly at 18 degrees C but accumulated in the cells at 28 degrees C. From these results, we propose that the AEP prosequence plays an additional essential role in guiding the proper folding of the protein into a conformation compatible with secretion.  相似文献   

4.
A stretch of 10 consecutive dipeptides with the sequence -X-Ala- or -X-Pro-, possible cleavage sites for dipeptidyl aminopeptidase (DPAPase) activity, are located in the prepro-region of the alkaline extracellular protease (AEP) beginning at Leu14. Evidence for DPAPase processing of this dipeptide stretch was obtained by characterizing the polypeptide secreted by a strain carrying a xpr6 mutation. The secreted polypeptide reacted with antibodies specific for AEP and was essentially identical to the 52-kilodalton intracellular AEP precursor based on mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, content of N-linked carbohydrate, and peptide mapping. Amino-terminal amino acid sequencing of this secreted precursor revealed that it consisted of at least three major polypeptides. One began at the end of the stretch of dipeptides, and two of the others began two and four amino acids upstream. These results confirm that DPAPase activity is involved in the formation of the 52-kilodalton AEP precursor. In other reported cases of DPAPase processing, the dipeptides are located directly upstream of the mature polypeptide. For AEP, the dipeptide stretch is located over 120 amino acids upstream from the N terminus of mature AEP. The novel location of the dipeptide stretch may provide a mechanism for preventing premature activation of AEP in the secretory pathway.  相似文献   

5.
Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.  相似文献   

6.
7.
Cloning and sequencing of Serratia protease gene.   总被引:46,自引:1,他引:45       下载免费PDF全文
The gene encoding an extracellular metalloproteinase from Serratia sp. E-15 has been cloned, and its complete nucleotide sequence determined. The amino acid sequence deduced from the nucleotide sequence reveals that the mature protein of the Serratia protease consists of 470 amino acids with a molecular weight of 50,632. The G+C content of the coding region for the mature protein is 58%; this high G+C content is due to a marked preference for G+C bases at the third position of the codons. The gene codes for a short pro-peptide preceding the mature protein. The Serratia protease gene was expressed in Escherichia coli and Serratia marcescens; the former produced the Serratia protease in the cells and the latter in the culture medium. Three zinc ligands and an active site of the Serratia protease were predicted by comparing the structure of the enzyme with those of thermolysin and Bacillus subtilis neutral protease.  相似文献   

8.
Energy status of the novel alkalitolerant Yarrowia lipolytica yeast strain grown at alkaline conditions (pH 9.7) was examined. Cells grown under such severe conditions were found to preserve high respiratory activity. The oxidative phosphorylation system dominated in the energy budget of the cell. A procedure was specially design to isolate tightly coupled mitochondria from yeast cells grown at alkaline conditions. The isolated mitochondrial preparations met known criteria of physiological intactness, as inferred from their ability to maintain distinctive state 4-3 respiration transition upon addition of ADP, high respiratory rates, good respiratory control values, and ADP/O ratios close to the theoretically expected maxima for the substrates used.  相似文献   

9.
Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.  相似文献   

10.
V A David  A H Deutch  A Sloma  D Pawlyk  A Ally  D R Durham 《Gene》1992,112(1):107-112
The gene (nprV), encoding the extracellular neutral protease, vibriolysin (NprV), of the Gram- marine microorganism, Vibrio proteolyticus, was isolated from a V. proteolyticus DNA library constructed in Escherichia coli. The recombinant E. coli produced a protease that co-migrated with purified neutral protease from V. proteolyticus on non-denaturing polyacrylamide gels, and that demonstrated enzymatic specificity towards the neutral protease substrate N-[3-(2-furyl)acryloyl]-L-alanylphenylalanine amide. The nucleotide (nt) sequence of the cloned nprV gene revealed an open reading frame encoding 609 amino acids (aa) including a putative signal peptide sequence followed by a long 'pro' sequence consisting of 172 aa. The N-terminal aa sequence of NprV purified from cultures of V. proteolyticus, identified the beginning of the mature protein within the aa sequence deduced from the nt sequence. Comparative analysis of mature NprV to the sequences of the neutral proteases from Bacillus thermoproteolyticus (thermolysin) and Bacillus stearothermophilus identified extensive regions of conserved aa homology, particularly with respect to active-site residues, zinc-binding residues, and calcium-binding sites. NprV was overproduced in Bacillus subtilis by placing the DNA encoding the 'pro' and mature enzyme downstream from a Bacillus promoter and signal sequence.  相似文献   

11.
《Process Biochemistry》2007,42(3):384-391
An extracellular lipase from Yarrowia lipolytica (YlLip2) has been purified by ion exchange chromatography on Q sepharose FF, followed by hydrophobic interaction chromatography on butyl sepharose FF. SDS-PAGE showed that the molecular weight of this lipase is about 38 kDa. N-terminal amino acid sequencing and MALDI-TOF mass spectral analysis showed that this lipase is encoded by gene LIP2 (GenBank accession no. AJ012632). Enzymatic deglycosylation showed that this lipase is a glycosylated protein which contains about 12% sugar. The corresponding deglycosylated lipase remained 88% specific activity of untreated lipase. There was a high amino acid sequence identity (91%) between YlLip2 and Candida deformans lipase CdLip1 (GenBank accession no. AJ428393). The optima temperature and pH for the purified lipase was 40 °C and 8.0, respectively. The lipase showed a preference for long chain fatty acid methyl esters (C12–C16), with the highest activity toward methyl myristate (C14). Lipase activity was stimulated by Ca2+ and Mg2+ and inhibited by Zn2+, Ni2+ and Cu2+, whereas EDTA had no effect on its activity. A 0.1% of Tween 80 and Span 65 increased slightly the enzyme activity and SDS inhibited it.  相似文献   

12.
Wild-type (WT) Yarrowia lipolytica strain secretes a major extracellular lipase Lip2p which is glycosylated. In silico sequence analysis reveals the presence of two potential N-glycosylation sites (N113IS and N134NT). Strains expressing glycosylation mutant forms were constructed. Esterase activities for the different forms were measured with three substrates: p-nitrophenol butyrate (p-NPB), tributyrin and triolein. Sodium dodecyl sulfate polacrylamide gel electrophoresis analysis of supernatant indicated that the suppression of the two sites of N-glycosylation did not affect secretion. S115V or N134Q mutations led to lipase with similar specific activity compared with WT lipase while a T136V mutation reduced specific activity toward p-NPB and tributyrin. Electrospray ionization MS of the WT entire protein led to an average mass of 36 950 Da, higher than the mass deduced from the amino acid sequence (33 385 Da) and to the observation of at least two different mannose structures: Man(8)GlcNAc(2) and Man(9)GlcNAc(2). LC-tandem MS analysis of the WT Lip2p after trypsin and endoproteinase Asp-N treatments led to high coverage (87%) of protein sequence but the peptides containing N113 and N134 were not identified. We confirmed that the presence of N-glycosylation occurred at both N113 and N134 by MS of digested proteins obtained after enzymatic deglycosylation or from mutant forms.  相似文献   

13.
In this study we used a newly isolated Yarrowia lipolytica strain with a unique capacity to grow over a wide pH range (3.5-10.5), which makes it an excellent model system for studying phosphate transport systems in cells grown under alkaline conditions. Phosphate uptake by Y. lipolytica yeast cells grown at pH 9.5-10 was shown to be mediated by several kinetically discrete Na+-dependent systems. One of these, a low-affinity transporter, operates at high Pi concentrations and is, to our knowledge, here kinetically characterized for the first time. The other two high-affinity systems are derepressible, come into play under conditions of Pi-starvation, and appear to be controlled by the availability of extracellular Pi. They represent the first examples of high-capacity, Na+-driven Pi transport systems in an organism belonging to neither the animal nor the bacterial kingdoms.  相似文献   

14.
15.
Casein kinase II from the yeast Yarrowia lipolytica is a heterotetramer of the form αα′β2. We report on the cloning and sequencing of a partial cDNA and of the complete genomic DNA coding for the catalytic α subunit of the casein kinase II from this yeast species. The sequence of the gene coding for this enzyme has been analyzed. No intron was found in the gene, which is present in a single copy. The deduced amino acid sequence of the gene shows high similarity with those of α subunit described in other species, although, uniquely, Y. lipolytica CKIIα lacks cysteines. We find that the α subunit sequence of Y. lipolytica CKII is shown greater homology with the corresponding protein from S. pombe than with that from S. cerevisiae. We have analyzed CKIIα expression and CKIIα activity. We show that expression of this enzyme is regulated. The catalytic subunit is translated from a single mRNA, and the enzyme is present at a very low level in Y. lipolytica, as in other yeasts.  相似文献   

16.
In this study an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and potassium phosphate was tested for the purification of lipase from Yarrowia lipolytica IMUFRJ 50682. Ultrafiltration and precipitation with acetone and kaolin were also used as traditional comparison methods Ultrafiltration was a good method with a purification factor of 6.55, but protease was also purified in this extract. For the precipitation with acetone and kaolin lower values of lipase and protease activity were found in relation to the original crude enzyme extract. Under the best conditions of ATPS (pH 6 and 4 °C), the purification fold was greater than 40 and selectivity was almost 500. Lipase was recovered in the salty phase which makes it easier to purify it. The optimum pH and temperature ranges for purified lipase with this system was 6–7 and 35–40 °C, respectively. Lipase thermostability was increased in relation to crude extract after the purification with the PEG/phosphate buffer system for temperatures lower than 50 °C. All enzyme extracts showed good stability to a wide pH range. Y. lipolytca lipase was successfully purified by using ATPS in a single downstream processing step and presented good process characteristics after this treatment.  相似文献   

17.
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.  相似文献   

18.
A gene encoding an alkaline protease was cloned from an alkalophilic bacillus, and its nucleotide sequence was determined. The cloned gene was used to increase the copy number of the protease gene on the chromosome by an improved gene amplification technique.  相似文献   

19.
Pseudomonas virulence is thought to depend on multiple characteristics, including the production of an extracellular alkaline protease. We report the isolation, from a PAO1 DNA genomic bank, of a cosmid carrying the structural gene coding for alkaline protease. By in vivo mutagenesis using transposon Tn1735, which functions as a transposable promoter, the expression of an 8.8-kilobase DNA fragment under control the tac promoter was obtained. When expressed in Escherichia coli, active alkaline protease was synthesized and secreted to the extracellular medium in the absence of cell lysis.  相似文献   

20.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号