首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.  相似文献   

3.
The availability of a wide range of independent lines for the annual medic Medicago truncatula led us to search for natural variants in the symbiotic association with Sinorhizobium meliloti. Two homozygous lines, Jemalong 6 and DZA315.16, originating from an Australian cultivar and a natural Algerian population, respectively, were inoculated with two wild-type strains of S. meliloti, RCR2011 and A145. Both plant lines formed nitrogen-fixing (effective) nodules with the RCR2011 strain. However, the A145 strain revealed a nitrogen fixation polymorphism, establishing an effective symbiosis (Nod(+)Fix(+)) with DZA315.16, whereas only small, white, non-nitrogen fixing nodules (Nod(+)Fix(-)) were elicited on Jemalong 6. Cytological studies demonstrated that these non-fixing nodules are encircled by an endodermis at late stages of development, with no visible meristem, and contain hypertrophied and autofluorescent infection threads, suggesting the induction of plant defense reactions. The non-fixing phenotype is independent of growth conditions and determined by a single recessive allele (Mtsym6), which is located on linkage group 8.  相似文献   

4.
Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concentrations.Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.  相似文献   

5.
This study compared the growth, nodulation, N2 fixation, and ion distribution in three Medicago truncatula lines, in response to salt in nutrient solution. Two local lines (TN8.20 and TN6.18) and a reference line (Jemalong 6) were inoculated with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl) and grown in a controlled glasshouse with or without 75 mM NaCl. A genotypic variation in tolerance to salt was found: TN6.18 was the most sensitive line whereas TN8.20 was the most tolerant. The relative tolerance of TN8.20 was concomitant with the lowest leaf Na+ concentration and the highest nodule biomass production. However, nodule efficiency (amount of nitrogen fixed per g dry weight nodule) decreased in all lines. Results suggest that the tolerance to salt seems to depend on the host plant ability to protect its leaves against an excessive Na+ (and Cl?) accumulation, and its ability to maintain the development of an abundant nodular system, which in turn determines an important rate of nitrogen fixation and allows the plants to conserve their growth potentialities. The loss of the nodular efficiency under salt stress seems to be compensated by a large nodule biomass.  相似文献   

6.
Abstract

In the present work, the response to NaCl applied at the vegetative stage to Medicago truncatula and Lotus japonicus has been evaluated in order to ascertain whether the effect of salt stress on nitrogen fixation is due to a limitation on nodular carbon metabolism. Results show maximum sucrose synthase (SS) and alkaline invertase (AI) activities were obtained at the vegetative stage, when maximum nitrogenase activity was detected in both species. SS activity decreased with the salt treatment, providing evidence of the regulatory role of this enzyme for the carbon supply to the bacteroids. Phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activities could account for higher nitrogen fixation efficiency detected in L. japonicus nodules and isocitrate dehydrogenase (ICDH) activity compensated for the carbon limitations that occur under salt stress. These results support that nitrogenase inhibition in nodules experiencing salt stress is doubt to a carbon flux shortage, as result of carbon metabolism enzymes activities down-regulation.  相似文献   

7.
The ectomycorrhizal fungus Tricholoma populinum is host-specific with Populus species. T. populinum has wind-dispersed progagules and may be capable of long-distance dispersal. In this study, we tested the hypothesis of a panmictic population between Scandinavia and North America. DNA sequences from five nuclear loci were used to assess phylogeographic structure and nucleotide divergence between continents. Tricholoma populinum was composed of Scandinavian and North American lineages with complete absence of shared haplotypes and only one shared nucleotide mutation. Divergence of these lineages was estimated at approx. 1.7-1.0 million yr ago (Ma), which occurred after the estimated divergence of host species Populus tremula and Populus balsamifera/Populus trichocarpa at 5 Ma. Phylogeographic structure was not observed within Scandinavian or North American lineages of T. populinum. Intercontinental divergence appears to have resulted from either allopatric isolation; a recent, rare long-distance dispersal founding event followed by genetic drift; or the response in an obligate mycorrhizal fungus with a narrow host range to contractions and expansion of host distribution during glacial and interglacial episodes within continents. Understanding present genetic variation in populations is important for predicting how obligate symbiotic fungi will adapt to present and future changing climatic conditions.  相似文献   

8.
Lotus japonicus and Medicago truncatula model legumes, which form determined and indeterminate nodules, respectively, provide a convenient system to study plant-Rhizobium interaction and to establish differences between the two types of nodules under salt stress conditions. We examined the effects of 25 and 50mM NaCl doses on growth and nitrogen fixation parameters, as well as carbohydrate content and carbon metabolism of M. truncatula and L. japonicus nodules. The leghemoglobin (Lb) content and nitrogen fixation rate (NFR) were approximately 10.0 and 2.0 times higher, respectively, in nodules of L. japonicus when compared with M. truncatula. Plant growth parameters and nitrogenase activity decreased with NaCl treatments in both legumes. Sucrose was the predominant sugar quantified in nodules of both legumes, showing a decrease in concentration in response to salt stress. The content of trehalose was low (less than 2.5% of total soluble sugars (TSS)) to act as an osmolyte in nodules, despite its concentration being increased under saline conditions. Nodule enzyme activities of trehalose-6-phosphate synthase (TPS) and trehalase (TRE) decreased with salinity. L. japonicus nodule carbon metabolism proved to be less sensitive to salinity than in M. truncatula, as enzymatic activities responsible for the carbon supply to the bacteroids to fuel nitrogen fixation, such as sucrose synthase (SS), alkaline invertase (AI), malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC), were less affected by salt than the corresponding activities in barrel medics. However, nitrogenase activity was only inhibited by salinity in L. japonicus nodules.  相似文献   

9.
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron‐molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss‐of‐function mot1.21 mutant showed reduced growth compared with wild‐type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum‐dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen‐fixing nodules, since genetic complementation with a wild‐type MtMOT1.2 gene or molybdate‐fortification of the nutrient solution, both restored wild‐type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.  相似文献   

10.
Aluminum in the form of Al3+ is one of the most toxic heavy metal pollutants in nature and its effects are primarily root-related. Roots of Medicago truncatula exposed to 50 μM of AlCl3 for 2 h and 24 h were examined by light and electron microscopy. Changes in the appearance of the host cells, infection threads and bacteroidal tissue occurred during the first 2 h of Al stress. Microscopic observations showed that aluminum: (1) induced thickening of plant cell and infection threads (ITs) walls, (2) stimulated IT enlargement, (3) caused disturbances in bacterial release from the ITs, (4) modified cell vacuolation and induced synthesis of granular material and its deposition in the cytoplasm, (5) and caused structural alterations of organella and bacteroids.  相似文献   

11.
The hydroxyproline-rich root nodules of legumes provide a microaerobic niche for symbiotic nitrogen-fixing Rhizobacteria. The contributions of the cell wall and associated structural proteins, particularly the hydroxyproline-rich glycoproteins (HRGPs), are therefore of interest. Our approach involved identification of the protein components by direct chemical analysis of the insoluble wall. Chymotryptic peptide mapping showed a "P3-type" extensin containing the highly arabinosylated Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr3-Lys motif as a major component. Cell wall amino acid analyses and quantitative hydroxyproline arabinoside profiles, predominantly of tri- and tetraarabinosides, confirmed this extensin as the major structural protein in the cell walls of both root nodules and uninfected roots. On the other hand, judging from the Pro, Glu and non-glycosylated Hyp content, the nodule-specific proline-rich glycoproteins, such as the early nodulins (ENOD-PRPs), are present in much lesser amounts. Although we isolated no PRP peptides from nodule cell walls, a single PRP peptide from root cell walls confirmed the presence of a PRP in roots and represented the first direct evidence for a crosslinked PRP in muro. Compared with root cell walls (approximately 7% protein dry weight) nodule cell walls contained significantly more protein (approximately 13% dry weight) with an overall amino acid and peptide composition indicating the presence of structural protein unrelated to the HRGPs.  相似文献   

12.
Lucifer Yellow (LYCH) and carboxyfluorescein (CF) served in Medicago truncatula roots and root nodules as the markers of apoplastic and symplastic transport, respectively. The aim of this study was to understand better the water and photoassimilate translocation pathways to and within nodules. The present study shows that in damaged roots LYCH moves apoplastically through the vascular elements but it was not detected within the nodule vascular bundles. In intact roots, the outer cortex was strongly labeled but the dye was not present in the interior of intact root nodules. The inwards movement of LYCH was halted in the endodermis. When the dye was introduced into a damaged nodule by infiltration, it spread only in the cell walls and the intercellular spaces up to the inner cortex. Our research showed that in addition to the outer cortex, the inner tissue containing bacteroid-infected cells is also an apoplastic domain. Our results are consistent with the hypothesis that nodules do not receive water from the xylem but get it and photoassimilates from phloem. A comparison between using LYCH and LYCH followed by glutaraldehyde fixation indicates that glutaraldehyde is responsible for fluorescence of some organelles within root nodule cells. The influence of the fixation on nodule fluorescence has not been reported before but must be taken into consideration to avoid errors. An attempt was made to follow carboxyfluorescein (6(5) CF) translocation from leaflets into roots and root nodules. In root nodules, CF was present in all or a couple of vascular bundles (VB), vascular endodermis and some adjacent cells. The leakage of CF from the VBs was observed, which suggests symplastic continuity between the VBs and the nodule parenchyma. The lack of CF in inner tissue was observed. Therefore, photoassimilate entry to the infected region of nodule must involve an apoplastic pathway.  相似文献   

13.
14.
Mapping the proteome of barrel medic (Medicago truncatula)   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

15.
Long-distance auxin transport was examined in Medicago truncatula and in its supernodulating mutant sunn (super numeric nodules) to investigate the regulation of auxin transport during autoregulation of nodulation (AON). A method was developed to monitor the transport of auxin from the shoot to the root in whole seedlings. Subsequently, the transport was monitored after inoculation of roots with the nodulating symbiont Sinorhizobium meliloti. The sunn mutant showed an increased amount of auxin transported from the shoot to the root compared to the wild type. The auxin transport capacity of excised root segments was similar in wild type and sunn, suggesting that the difference in long-distance auxin transfer between them is due to loading in the shoot. After inoculation, wild-type seedlings showed decreased auxin loading from the shoot to the root; however, the sunn mutant failed to reduce the amount of auxin loaded. The time of reduced auxin loading correlated with the onset of AON. Quantification of endogenous auxin levels at the site of nodule initiation showed that sunn contained three times more auxin than wild type. Inoculation of sunn failed to reduce the level of auxin within 24 h, as was observed in the wild type. We propose a model for the role of auxin during AON of indeterminate legumes: 1) high levels of endogenous auxin are correlated with increased numbers of nodules, 2) inoculation of roots reduces auxin loading from the shoot to the root, and 3) subsequent reduction of auxin levels in the root inhibits further nodule initiation.  相似文献   

16.
The vacuole development in root nodules of Medicago truncatula was analyzed by light and electron microscopy. Histochemistry of protease activity in root nodules was studied using fluorogenic substrates for proteolytic enzymes, 7-amino-4-methylcoumarin, CBZ-L-phenylalanyl-L-arginine amide, hydrochloride (AMC), and rhodamine 110, bis-(CBZ-L-phenylalanyl-L-arginine amide) dihydrochloride (RPA). Furthermore, the topology of acidification of the central vacuoles in infected and noninfected cells in root nodules of Medicago truncatula was analyzed with the fluorescent pH-sensitive acidotropic dye Neutral Red. It was shown that vacuoles were acidic, lytic organelles in noninfected cells and young infected cells of the nodule where they displayed protease activity. Mature vacuoles of infected cells had high pH and did not show any substantial protease activity. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 31–38. The text was submitted by the authors in English.  相似文献   

17.
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen‐fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2‐fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH‐sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.  相似文献   

18.
A regenerable line of Medicago truncatula (Jemalong 2HA) as a recipient species, was fused with the sexually incompatible species Medicago scutellata or Medicago rugosa. The treatments described maintain the chromosome number of the recipient but enable the transfer of small amounts of DNA of the donor species, probably by intergenomic recombination. Without a chromosome number-change fusion products can readily regenerate to produce fertile plants; and potentially a library with a diverse array of new genetic material. The selection of fused cells is based on treatment of the recipient cells with iodoacetamide (IOA), a non-regenerable donor, γ-irradiation of the donor, and regeneration on a medium favouring the recipient. DNA transfer was demonstrated by amplified fragment length polymorphism (AFLP), Southern hybridisation and changed morphology. Received: 21 December 2000 / Accepted: 5 April 2001  相似文献   

19.
20.
Nodulated faba-beans ( Vicia faba L. var. minor) exhibiting high rates of N2 fixation (133 μmol C2H4 g−1 dry weight h−1), were subjected to water restriction. A loss of C2H2 reduction due to water stress was always associated with a decline of the leghemoglobin content for each of the 4 decreasing values of Ψmod. Electron micrographs showed ultrastructural alterations of the fixing tissue, which affected both partners and increased with the severity of water stress. In the nodule cytosol, the alkaline proteolysis approximately doubled when Ψmod decreased from −0.55 MPa to −1.55 MPa. Concomitantly, an increase of the nodule intracellular pH from 6.3 to 7.0 was observed. Proteolysis was due to serine proteases, exhibiting a pH-optimum of 8 and which actively degraded purified leghemoglobin in vitro (Km=100 μ M ). The degradation of leghemoglobin during water stress may contribute to the loss of C2H2 reduction and may affect the pattern of recovery upon rewatering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号