首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetically directed fractional (13)C labeling method for metabolic flux evaluation relies on performing a 2-D [(13)C, (1)H] NMR experiment on extracts from organisms cultured on a uniformly labeled carbon substrate. This article focuses on improvements in the interpretation of data obtained from such an experiment by employing the concept of bondomers. Bondomers take into account the natural abundance of (13)C; therefore many bondomers in a real network are zero, and can be precluded a priori--thus resulting in fewer balances. Using this method, we obtained a set of linear equations which can be solved to obtain analytical formulas for NMR-measurable quantities in terms of fluxes in glycolysis and the pentose phosphate pathways. For a specific case of this network with four degrees of freedom, a priori identifiability of the fluxes was shown possible for any set of fluxes. For a more general case with five degrees of freedom, the fluxes were shown identifiable for a representative set of fluxes. Minimal sets of measurements which best identify the fluxes are listed. Furthermore, we have delineated Boolean function mapping, a new method to iteratively simulate bondomer abundances or efficiently convert carbon skeleton rearrangement information to mapping matrices. The efficiency of this method is expected to be valuable while analyzing metabolic networks which are not completely known (such as in plant metabolism) or while implementing iterative bondomer balancing methods.  相似文献   

2.
A well-established way of determining metabolic fluxes is to measure 2D [(13)C,(1)H] COSY NMR spectra of components of biomass grown on uniformly (13)C-labeled carbon sources. When using the entire set of measured data to simultaneously determine all fluxes in a proposed metabolic network model, the (13)C-labeling distribution in all measured compounds has to be simulated. This requires very large sets of isotopomer or cumomer balances. This article introduces the new concept of bondomers; entities that only vary in the numbers and positions of C-C bonds that have remained intact since the medium substrate molecule entered the metabolism. Bondomers are shown to have many analogies to isotopomers. One of these is that bondomers can be transformed to cumulative bondomers, just like isotopomers can be transformed to cumomers. Similarly to cumomers, cumulative bondomers allow an analytical solution of the entire set of balances describing a metabolic network. The main difference is that cumulative bondomer models are considerably smaller than corresponding cumomer models. This saves computational time, allows easier identifiability analysis, and yields new insights in the information content of 2D [(13)C,(1)H] COSY NMR data. We illustrate the theoretical concepts by means of a realistic example of the glycolytic and pentose phosphate pathways. The combinations of 2D [(13)C,(1)H] COSY NMR data that allow identification of all metabolic fluxes in these pathways are analyzed, and it is found that the NMR data contain less information than was previously expected.  相似文献   

3.
Metabolic flux analysis is a powerful diagnostic tool in metabolic engineering, and determination of biomass composition is indispensable to accurate flux evaluation. We report the elemental and biomolecular composition of Catharanthus roseus hairy roots, a pharmaceutically significant plant system and an important metabolic engineering target. The molecular formula of the organic material in the hairy roots was C12.0H22.7N0.4O7.6 during mid-exponential growth. The abundances of lipids, lignin, cellulose, hemicellulose, starch, protein, proteinogenic amino acids, mineral ash, and moisture in the biomass were quantified. Analysis of water-soluble components of the biomass with 1-D 13C and 2-D [1H,1H] correlation (COSY) NMR spectroscopy revealed that the water-soluble components were composed almost entirely of -glucans. Agropine, a frequently reported hairy root biomass component, was not detected. Our measurements of the biomass components quantified 83.6 +/- 9.3% (w/w) of the biomass. Together with previously reported abundances of indole alkaloids, we accounted for at least 85.9 +/- 11.6% (w/w) of the carbon in the biomass, which enabled the precise determination of 12 biomass synthesis fluxes.  相似文献   

4.
Metabolic flux quantification in plants is instrumental in the detailed understanding of metabolism but is difficult to perform on a systemic level. Toward this aim, we report the development and application of a computer-aided metabolic flux analysis tool that enables the concurrent evaluation of fluxes in several primary metabolic pathways. Labeling experiments were performed by feeding a mixture of U-(13)C Suc, naturally abundant Suc, and Gln to developing soybean (Glycine max) embryos. Two-dimensional [(13)C, (1)H] NMR spectra of seed storage protein and starch hydrolysates were acquired and yielded a labeling data set consisting of 155 (13)C isotopomer abundances. We developed a computer program to automatically calculate fluxes from this data. This program accepts a user-defined metabolic network model and incorporates recent mathematical advances toward accurate and efficient flux evaluation. Fluxes were calculated and statistical analysis was performed to obtain sds. A high flux was found through the oxidative pentose phosphate pathway (19.99 +/- 4.39 micromol d(-1) cotyledon(-1), or 104.2 carbon mol +/- 23.0 carbon mol per 100 carbon mol of Suc uptake). Separate transketolase and transaldolase fluxes could be distinguished in the plastid and the cytosol, and those in the plastid were found to be at least 6-fold higher. The backflux from triose to hexose phosphate was also found to be substantial in the plastid (21.72 +/- 5.00 micromol d(-1) cotyledon(-1), or 113.2 carbon mol +/-26.0 carbon mol per 100 carbon mol of Suc uptake). Forward and backward directions of anaplerotic fluxes could be distinguished. The glyoxylate shunt flux was found to be negligible. Such a generic flux analysis tool can serve as a quantitative tool for metabolic studies and phenotype comparisons and can be extended to other plant systems.  相似文献   

5.
Mitochondrial metabolism in developing embryos of Brassica napus   总被引:1,自引:0,他引:1  
The metabolism of developing plant seeds is directed toward transforming primary assimilatory products (sugars and amino acids) into seed storage compounds. To understand the role of mitochondria in this metabolism, metabolic fluxes were determined in developing embryos of Brassica napus. After labeling with [1,2-(13)C2]glucose + [U-(13)C6]glucose, [U-(13)C3]alanine, [U-(13)C5]glutamine, [(15)N]alanine, (amino)-[(15)N]glutamine, or (amide)-[(15)N]glutamine, the resulting labeling patterns in protein amino acids and in fatty acids were analyzed by gas chromatography-mass spectrometry. Fluxes through mitochondrial metabolism were quantified using a steady state flux model. Labeling information from experiments using different labeled substrates was essential for model validation and reliable flux estimation. The resulting flux map shows that mitochondrial metabolism in these developing seeds is very different from that in either heterotrophic or autotrophic plant tissues or in most other organisms: (i) flux around the tricarboxylic acid cycle is absent and the small fluxes through oxidative reactions in the mitochondrion can generate (via oxidative phosphorylation) at most 22% of the ATP needed for biosynthesis; (ii) isocitrate dehydrogenase is reversible in vivo; (iii) about 40% of mitochondrial pyruvate is produced by malic enzyme rather than being imported from the cytosol; (iv) mitochondrial flux is largely devoted to providing precursors for cytosolic fatty acid elongation; and (v) the uptake of amino acids rather than anaplerosis via PEP carboxylase determines carbon flow into storage proteins.  相似文献   

6.
Growth and diterpenoid accumulation (salvipisone, ferruginol, aethiopinone and 1-oxoaethiopinone) during the growth cycle of a Salvia sclarea hairy root culture are described. The roots transformed by Agrobacterium rhizogenes (LBA 9402) were cultured in half-strength B5 liquid medium supplemented with 30 g L(-1) sucrose under light (16 h/8 h light/dark). A culture period of 30 days was optimal for both biomass and diterpenoid production. The total content of four diterpenoids in the hairy roots [(27.3 +/- 0.6) mg g(-1) dry weight] was higher than that of roots of field-grown S. sclarea plants [(3.15 +/- 0.15) mg g(-1) dry weight]. In transformed roots, aethiopinone was the main diterpenoid, whereas the principal diterpenoid of natural roots was salvipisone.  相似文献   

7.
At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured (13)C-labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [(13)C, (1)H] COSY data. A new concept is applied for simulation of this type of (13)C-labeling data: cumulative bondomer modeling. The outcomes of the (13)C-labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using (13)C-labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6-phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the (13)C-labeling data. Strict statistical testing of the outcomes of (13)C-labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model.  相似文献   

8.
Cloutier M  Perrier M  Jolicoeur M 《Phytochemistry》2007,68(16-18):2393-2404
A dynamic model for plant cell and hairy root primary metabolism is presented. The model includes nutrient uptake (Pi, sugars, nitrogen sources), the glycolysis and pentose phosphate pathways, the TCA cycle, amino acid biosynthesis, respiratory chain, biosynthesis of cell building blocks (structural hexoses, organic acids, lipids, and organic phosphated molecules). The energy shuttles (ATP, ADP) and cofactors (NAD/H, NADP/H) are also included. The model describes the kinetics of 44 biochemical reactions (fluxes) of the primary metabolism of plant cells and includes 41 biochemical species (metabolites, nutrients, biomass components). Multiple Michaelis-Menten type kinetics are used to describe biochemical reaction rates. Known regulatory phenomena on metabolic pathways are included using sigmoid switch functions. A visualization framework showing fluxes and metabolite concentrations over time is presented. The visualization of fluxes and metabolites is used to analyze simulation results from Catharanthus roseus hairy root 50 d batch cultures. The visualization of the metabolic system allows analyzing split ratios between pathways and flux time-variations. For carbon metabolism, the cells were observed to have relatively high and stable fluxes for the central carbon metabolism and low and variable fluxes for anabolic pathways. For phosphate metabolism, a very high free intracellular Pi turnover rate was observed with higher flux variations than for the carbon metabolism. Nitrogen metabolism also exhibited large flux variations. The potential uses of the model are also discussed.  相似文献   

9.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

10.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   

11.
In this work, brain cell metabolism was investigated by (13)C NMR spectroscopy and metabolic flux analysis (MFA). Monotypic cultures of astrocytes were incubated with labeled glucose for 38 h, and the distribution of the label was analyzed by (13)C NMR spectroscopy. The analysis of the spectra reveals two distinct physiological states characterized by different ratios of pyruvate carboxylase to pyruvate dehydrogenase activities (PC/PDH). Intracellular flux distributions for both metabolic states were estimated by MFA using the isotopic information and extracellular rate measurements as constraints. The model was subsequently checked with the consistency index method. From a biological point of view, the occurrence of the two physiological states appears to be correlated with the presence or absence of extracellular glutamate. Concerning the model, it can be stated that the metabolic network and the set of constraints adopted provide a consistent and robust characterization of the astrocytic metabolism, allowing for the calculation of central intracellular fluxes such as pyruvate recycling, the anaplerotic flux mediated by pyruvate carboxylase, and the glutamine formation through glutamine synthetase.  相似文献   

12.
Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of immunoprecipitates of liver cytosol with anti-(L-type pyruvate kinase) serum revealed proteins of mol.wt. 56 000 and 42 000 in addition to the heavy and light chains. The ratio of the 56 000 mol.wt. to the 42 000 mol.wt. protein increased under dietary conditions that resulted in an increase in the apparent specific activity of hepatic pyruvate kinase. The 42 000 mol.wt. protein was removed from immunoprecipitates if the liver cytosol was partially purified by pH precipitation and (NH4)2SO4 fractionation before addition of the antiserum. This technique may be used to analyse the formation of pure L-type pyruvate kinase in liver. By using H14CO3-labelling, the t1/2 of L-type pyruvate kinase was estimated as 75 +/- 1.7 h in post-weaned high-carbohydrate-diet-fed rats. Before weaning there was little immunoreactive pyruvate kinase in rat liver cytosol. Induction began between 6 and 24 h after weaning and reached a maximum value 120 h after weaning. When clearly enhanced total pyruvate kinase activity was first observed at 24 h post-weaning, the apparent specific activity of hepatic pyruvate kinase was considerably lower than the specific activity of the pure isolated enzyme. When the induction of L-type pyruvate kinase was monitored by the incorporation of L-[4,5-3H]leucine, the maximum rate of synthesis occurred 24--48 h after weaning. After this period synthesis declined, indicating a relatively slow turnover of the enzyme once the enzyme concentration was established in the liver.  相似文献   

13.
Metabolic flux maps developed from 13C metabolic flux analysis (13C MFA) are effective tools for assessing the response of biological systems to genetic or environmental perturbations, and for identifying possible metabolic engineering targets. Experimental treatments were designed to distinguish between temperature effects prior to, and during incubation in vitro , on primary metabolism in developing soybeans. Biomass accumulation increased with temperature as did carbon partitioning into lipids. The flux through the plastidic oxidative pentose phosphate pathway (pglP) relative to sucrose intake remained fairly constant [∼56% (±24%)] when cotyledons were transferred from an optimum growth temperature to varying temperatures in in vitro culture, signifying a rigid node under these conditions. However, pglP flux ranged from 57 to 77% of sucrose intake when growth temperature in planta varied and were cultured in vitro at the same temperature (as the plant), indicating a flexible node for this case. The carbon flux through the anaplerotic reactions catalysed by plastidic malic enzyme (meP), cytosolic phosphoenolpyruvate (PEP) carboxylase and the malate (Mal) transporter from the cytosol to mitochondrion varied dramatically with temperature and had a direct influence on the carbon partitioning into protein and oil from the plastidic pyruvate (Pyr) pool. These results of the in vitro culture indicate that temperature during early stages of development has a dominant effect on establishing capacity for flux through certain components of central carbon metabolism.  相似文献   

14.
Actinobacillus succinogenes naturally produces high concentrations of succinate, a potential intermediary feedstock for bulk chemical productions. A. succinogenes responds to high CO(2) and H(2) concentrations by producing more succinate and by producing less formate, acetate, and ethanol. To determine how intermediary fluxes in A. succinogenes respond to CO(2) and H(2) perturbations, (13)C-metabolic flux analysis was performed in batch cultures at two different NaHCO(3) concentrations, with and without H(2), using a substrate mixture of [1-(13)C]glucose, [U-(13)C]glucose, and unlabeled NaHCO(3). The resulting amino acid, organic acid, and glycogen isotopomers were analyzed by gas chromatography-mass spectrometry and NMR. In all conditions, exchange flux was observed through malic enzyme and/or oxaloacetate decarboxylase. The presence of an exchange flux between oxaloacetate, malate, and pyruvate indicates that, in addition to phosphoenolpyruvate, oxaloacetate, and malate, pyruvate is a fourth node for flux distribution between succinate and alternative fermentation products. High NaHCO(3) concentrations decreased the amount of flux shunted by C(4)-decarboxylating activities from the succinate-producing C(4) pathway to the formate-, acetate-, and ethanol-producing C(3) pathway. In addition, pyruvate carboxylating flux increased in response to high NaHCO(3) concentrations. C(3)-pathway dehydrogenase fluxes increased or decreased appropriately in response to the different redox demands imposed by the different NaHCO(3) and H(2) concentrations. Overall, these metabolic flux changes allowed A. succinogenes to maintain a constant growth rate and biomass yield in all conditions. These results are discussed with respect to A. succinogenes' physiology and to metabolic engineering strategies to increase the flux to succinate.  相似文献   

15.
Steady-state metabolic flux analysis (MFA) is an experimental approach that allows the measurement of multiple fluxes in the core network of primary carbon metabolism. It is based on isotopic labelling experiments, and although well established in the analysis of micro-organisms, and some mammalian systems, the extension of the method to plant cells has been challenging because of the extensive subcellular compartmentation of the metabolic network. Despite this difficulty there has been substantial progress in developing robust protocols for the analysis of heterotrophic plant metabolism by steady-state MFA, and flux maps have now been published that reflect the metabolic phenotypes of excised root tips, developing embryos and cotyledons, hairy root cultures, and cell suspensions under a variety of physiological conditions. There has been a steady improvement in the quality, extent and statistical reliability of these analyses, and new information is emerging on the performance of the plant metabolic network and the contributions of specific pathways.  相似文献   

16.
Hairy roots of Senna alata transformed with Agrobacterium rhizogenes, strain ATCC 15834 were induced and grown in half-strength Murashige and Skoog (MS) medium. Effects of sucrose contents and hormones on the growth and sennosides A, B production were investigated. Hairy roots cultured on hormone-free half-strength MS medium containing 5% sucrose under dark condition mostly stimulated the growth of hairy roots and increased the content of sennosides A and B yielding (169 +/- 4) and (34 +/- 3) microg g(-1) dry wt, respectively.  相似文献   

17.
Removal of phenol, a major pollutant in aqueous effluents was studied using plant hairy root cultures. Among four different species of hairy roots tested, Brassica juncea showed the highest potential for phenol removal. The effect of phenol concentration and reuse in a batch system was studied using B. juncea hairy root cultures. Unlike most of the studies reported earlier, phenol removal by the hairy roots was seen to take place without the need for addition of external hydrogen peroxide (H(2)O(2)). To understand the mechanism of phenol removal, levels of peroxidase and phenol oxidase were monitored in the hairy roots. Peroxidase activity in the roots was enhanced when exposed to phenol, while phenol oxidase remained constant. Since peroxidase has a pre-requisite for H(2)O(2), the levels of H(2)O(2) were monitored for its in situ synthesis. H(2)O(2) levels were seen to increase in the presence of phenol. Thus, a mechanism wherein hairy roots also produce H(2)O(2) besides peroxidase, as a protection strategy of plant against xenobiotic stress is plausible.  相似文献   

18.
向润  江龙 《广西植物》2022,42(5):802-810
毛状根良好的生长状况是建立毛状根-AM真菌双重培养体系的关键,为优化毛状根培养基成分,确定适宜毛状根生长的蔗糖浓度,改善烟草毛状根的生长状况,该研究以发根农杆菌菌株C58C1诱导2个烟草品种NC82和Va116叶片产生毛状根,经PCR检测证实后,用含有不同蔗糖浓度的1/2MS培养基分别进行固体和液体优化培养,通过测定毛状根的分枝数、鲜重(FW)与干重(DW),研究蔗糖对2个品种烟草毛状根生长的影响。结果表明:(1)C58C1均能诱导两种烟草叶片产生毛状根,但诱导率不同,NC82(87.3%)的诱导率更高,是Va116(38.6%)的2.26倍。(2)培养基蔗糖浓度显著影响毛状根生长,因烟草品种和起始分枝数而异。(3)固体培养基优化培养NC82和Va116的毛状根,分枝数增长的抑制蔗糖浓度分别为25 g·L^(-1)和15 g·L^(-1);液体培养基优化培养分别在25 g·L^(-1)和15 g·L^(-1)时F(D)W达到最大,分别为0.541 g(0.055 g)、0.474 g(0.050 g)。(4)综合分枝数、F(D)W、毛状根生长势考虑,C58C1诱导NC82毛状根最适培养基蔗糖浓度为25 g·L^(-1),Va116毛状根为15 g·L^(-1)。该文优化了烟草毛状根培养基组成的适宜蔗糖浓度及培养方法,为后续毛状根大量扩繁奠定基础,建立了毛状根-AM真菌双重培养体系,解决了关键的寄主生长不良的问题。  相似文献   

19.
Isotopically nonstationary metabolic flux analysis (INST-MFA) provides a versatile platform to quantitatively assess in vivo metabolic activities of autotrophic systems. By applying INST-MFA to recombinant aldehyde-producing cyanobacteria, we identified metabolic alterations that correlated with increased strain performance in order to guide rational metabolic engineering. We identified four reactions adjacent to the pyruvate node that varied significantly with increasing aldehyde production: pyruvate kinase (PK) and acetolactate synthase (ALS) fluxes were directly correlated with product formation, while pyruvate dehydrogenase (PDH) and phosphoenolpyruvate carboxylase (PPC) fluxes were inversely correlated. Overexpression of enzymes for PK or ALS did not result in further improvements to the previous best-performing strain, while downregulation of PDH expression (through antisense RNA expression) or PPC flux (through expression of the reverse reaction, phosphoenolpyruvate carboxykinase) provided significant improvements. These results illustrate the potential of INST-MFA to enable a systematic approach for iterative identification and removal of pathway bottlenecks in autotrophic host cells.  相似文献   

20.
The increasing accessibility of mass isotopomer data via GC-MS and NMR technology has necessitated the use of a systematic and reliable method to take advantage of such data for flux analysis. Here we applied a nonlinear, optimization-based method to study substrate metabolism in cardiomyocytes using (13)C data from perfused mouse hearts. The myocardial metabolic network used in this study accounts for 257 reactions and 240 metabolites, which are further compartmentalized into extracellular space, cytosol, and mitochondrial matrix. Analysis of the perfused mouse heart showed that the steady-state ATP production rate was 16.6 +/- 2.3 micromol/min . gww, with 30% of the ATP coming from glycolysis. Of the four substrates available in the perfusate (glucose, pyruvate, lactate, and oleate), exogenous glucose forms the majority of cytosolic pyruvate. Pyruvate decaboxylation is significantly higher than carboxylation, suggesting that anaplerosis is low in the perfused heart. Exchange fluxes were predicted to be high for reversible enzymes in the citric acid cycle (CAC), but low in the glycolytic pathway. Pseudoketogenesis amounted to approximately 50% of the net ketone body uptake. Sensitivity analysis showed that the estimated flux distributions were relatively insensitive to experimental errors. The application of isotopomer data drastically improved the estimation of reaction fluxes compared to results computed with respect to reaction stoichiometry alone. Further study of 12 commonly used (13)C glucose mixtures showed that the mixtures of 20% [U-(13)C(6)] glucose, 80% [3 (13)C] glucose and 20% [U-(13)C(6)] glucose, 80% [4 (13)C] were best for resolving fluxes in the current network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号