首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have conducted an extensive phylogenetic analysis of polymorphic alleles from human and mouse major histocompatibility complex (MHC) class I and class II genes. The phylogenetic tree obtained for 212 complete human class I allele sequences (HLA-A, -B, and -C) has shown that all alleles from the same locus form a single cluster, which is highly supported by bootstrap values, except for one HLA-B allele (HLA-B*7301). Mouse MHC class I loci did not show locus-specific clusters of polymorphic alleles. This was considered to be because of either interlocus genetic exchange or the confusing designation of loci in different haplotypes at the present time. The locus specificity of polymorphic alleles was also observed in human and mouse MHC class II loci. It was therefore concluded that interlocus recombination or gene conversion is not very important for generating MHC diversity, with a possible exception of mouse class I loci. According to the phylogenetic trees of complete coding sequences, we classified human MHC class I (HLA-A, -B, and -C) and class II (DRB1) alleles into three to five major allelic lineages (groups), which were monophyletic with high bootstrap values. Most of these allelic groups remained unchanged even in phylogenetic trees based on individual exons, though this does not exclude the possibility of intralocus recombination involving short DNA segments. These results, together with the previous observation that MHC loci are subject to frequent duplication and deletion, as well as to balancing selection, indicate that MHC evolution in mammals is in agreement with the birth-and-death model of evolution, rather than with the model of concerted evolution.  相似文献   

2.
3.
4.
5.
The large-scale organization and polymorphism of the HLA class I region was investigated by pulsed field gel (PFG) fractionation of DNA from various HLA-typed cell lines cleaved by different 'rare cutter' restriction enzymes, followed by hybridization with 'general' and locus-specific HLA probes. Results indicate that (i) most HLA class I sequences are contained in a 340 kb MluI DNA fragment which also carries the HLA-A gene; (ii) HLA-A, -B and -C genes are present on different fragments bounded by 'HTF islands' (CpG-rich, unmethylated DNA regions containing multiple sites for 'rare cutter' enzymes) which generally coincide with the 5' regions of expressed genes; and (iii) very little fragment size polymorphism is seen, implying that expansion/contraction events in the HLA class I region due to unequal crossing over (as documented in the mouse class I system) are infrequently found in the human population.  相似文献   

6.
7.
8.
The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific.  相似文献   

9.
10.
11.
To obtain an insight into the evolutionary origin of the major histocompatibility complex (MHC) class I polymorphism, a cDNA library was prepared from a heterozygous chimpanzee cell line expressing MHC class I molecules crossreacting with allele-specific HLA-A11 antibodies. The library was screened with human class I locus-specific DNA probes, and clones encoding both alleles at the A and B loci have been identified and sequenced. In addition, the sequences of two HLA-A11 subtypes differing by a single nucleotide substitution have been obtained. The comparison of chimpanzee and human sequences revealed a close similarity (up to 98.5%). The chimpanzee A locus alleles showed greatest similarity to the human HLA-A11/A3 family of alleles, one of them being very close to HLA-A11. Similarly, segments of the ChLA-B alleles displayed greatest similarity to certain HLA-B alleles. The calculated evolutionary branch point for the A11-like alleles is 7 x 10(6) to 9 x 10(6) years, whereas the other A locus alleles diverged between 12 x 10(6) and 17 x 10(6) years ago. Since the human and chimpanzee lineages separated 5 x 10(6) to 7 x 10(6) years ago, our data support the notion that during evolution, MHC alleles are transmitted from one species to the next.  相似文献   

12.
In order to investigate the polymorphism of Alu insertions (POALINs) in the HLA region, we genotyped ten Alu loci (AluMICB, AluTF, AluHJ, AluHG, AluHF in the HLA class I region and AluDPB2, AluDQA2, AluDQA1, AluDRB1, AluORF10 in the HLA class II region) to determine their allele frequencies and associations with the HLA-A, HLA-B, HLA-C and HLA-DRB1 genes in the Chinese Han population. Our results showed the ten-loci POALINs varied in frequency between 0.003 and 0.425. By comparing the data of the ten-loci POALIN in Chinese Han with Japanese and Caucasian data, marked differences were observed between the three ethnic groups at the allelic or haplotypic levels. Each POALIN was in significant linkage disequilibrium with a variety of HLA-A, -B, -C and -DRB1 alleles, and was associated with a variety of HLA-A, -B, -C and -DRB1 allele in Chinese Han. This comparative study of multilocus POALINs in the HLA class I and II regions of the Chinese Han population shows that POALINs alone or as haplotypes together with the HLA class I and II alleles are informative genetic markers for the identification of HLA class I and II allele and variations, such as crossing over events within the same and/or different populations.  相似文献   

13.
In order to study the origin of the polymorphism of MHC class I molecules, we have cloned and sequenced five new Patr-A, -B, and -C loci alleles from two chimpanzees. Previous studies of sequence comparison between Patr and HLA class I alleles revealed that many of the sequence motifs were shared and the origin of class I molecules predated the divergence of chimpanzees and humans. These findings are confirmed by our current study. Additionally, our data suggest significant differences between mechanisms of evolution of the A, B, and C loci: (1) The B locus is characterized by frequent nucleotide substitutions, whereas the A and C loci are relatively more conserved; (2) However, unlike the A locus, the alpha2 domains of the C locus sequenced appear to produce MHC polymorphism between these species. These differences might imply the distinctive contributions of each locus during the evolutionary history.  相似文献   

14.
15.
The genetic events that produce diversity in class I MHC genes and proteins has been investigated by using a family of closely related HLA-A alleles. Five genes coding for HLA-A2.2Y, HLA-A2.3, and HLA-Aw68.2 have been isolated. Exon sequences are compared with the known sequences for HLA-A2.1, HLA-A2.2F, HLA-A2.4, HLA-Aw68.1, and HLA-Aw69. Pairwise comparison of the eight unique sequences shows that point mutation, reciprocal recombination, and gene conversion have all contributed significantly to the diversification of this family of alleles. These results are compared with those of other studies that have emphasized the role of gene conversion. A predominance of coding substitutions in the alpha 1 and alpha 2 domains is found, consistent with positive selection for polymorphism being a major factor in the fixation of these alleles. In the three cases examined, genes for phenotypically identical proteins gave identical nucleotide sequences, indicating that most, if not all, of the class I polymorphism is detectable by immunological methods. The apparent stability of the sequences suggests that the events generating some of the alleles occurred before the origin of modern Homo sapiens.  相似文献   

16.
A sample of 162 Mandenkalu from Eastern Senegal has been typed for three HLA class I loci: HLA-A, -B and -C. The Mandenka population presents a very high genetic variability with 15 alleles for locus A, 24 alleles for locus B, and at least 8 alleles for locus C. The calculated heterozygosities for the three loci A, B, and C are respectively 0.884, 0.944 and 0.829. The Mandenkalu allelic frequencies are close to that found in other sub-Saharan populations. They show, however, some peculiarities like the occurrence of the Bw 56 allele and the high frequencies of both B5 and B35.  相似文献   

17.
We have constructed cDNA clone libraries from two lymphoblastoid cell lines, JY (HLA-A2, B7, C untypeable) and LB (HLA-A28, B40, Cw3), and isolated clones encoding class I HLA antigens. We have characterized short oligonucleotide probes derived from the coding region of the HLA class I antigens which are specific for the HLA-A and -B loci. These probes have been used to subdivide the class I cDNA clones into subclasses. DNA sequencing of several HLA-A and -B related clones has allowed us to extend the primary structural characterization of these cell-surface antigens. This analysis has also detected a sequence polymorphism at the HLA-A locus, indicating that the previously considered homozygous typing cell line LB expresses two alleles of similar, although not identical, serological specificity.  相似文献   

18.
Ragoussis and co-workers (Genomics 4:301) previously described a class I HLA gene (now designated HLA-J) that maps to within 50 kb of HLA-A. The nucleotide sequences of three HLA-J alleles are reported here. Comparison of the nucleotide sequences of HLA-J alleles shows this gene is more related to HLA-G, A, and H than to HLA-B, C, E, and F. All four alleles of HLA-J are pseudogenes because of deleterious mutations that produce translation termination either in exon 2 or exon 4. Apart from these mutations, the predicted proteins have structures similar to those of HLA-A, B, and C molecules. There is, however, little polymorphism at HLA-J and none at functional positions of the Ag-recognition site. The polymorphism is less than found for HLA-H another HLA-A-related pseudogene. HLA-J appears, like HLA-H, to be an inactivated gene that result from duplication of an Ag-presenting locus related to HLA-A. Nucleotide sequence comparisons show that the HLA-A, H, J, and G genes form a well defined group of "HLA-A-related" loci. Evolutionary relationships as assessed by construction of trees suggest the four modern loci: HLA-A, G, H, and J were formed by successive duplications from a common ancestral gene. In this scheme one intermediate locus gave rise to HLA-A and H, the other to HLA-G and J.  相似文献   

19.
The Linum usitatissimum (flax) L gene alleles, which encode nucleotide binding site-Leu rich repeat class intracellular receptor proteins, confer resistance against the Melampsora lini (flax rust) fungus. At least 11 different L resistance specificities are known, and the corresponding avirulence genes in M. lini map to eight independent loci, some of which are complex and encode multiple specificities. We identified an M. lini cDNA marker that cosegregates in an F2 rust family with a complex locus determining avirulence on the L5, L6, and L7 resistance genes. Two related avirulence gene candidates, designated AvrL567-A and AvrL567-B, were identified in a genomic DNA contig from the avirulence allele, whereas the corresponding virulence allele contained a single copy of a related gene, AvrL567-C. Agrobacterium tumefaciens-mediated transient expression of the mature AvrL567-A or AvrL567-B (but not AvrL567-C) proteins as intracellular products in L. usitatissimum and Nicotiana tabacum (tobacco) induced a hypersensitive response-like necrosis that was dependent on coexpression of the L5, L6, or L7 resistance gene. An F1 seedling lethal or stunted growth phenotype also was observed when transgenic L. usitatissimum plants expressing AvrL567-A or AvrL567-B (but not AvrL567-C) were crossed to resistant lines containing L5, L6, or L7. The AvrL567 genes are expressed in rust haustoria and encode 127 amino acid secreted proteins. Intracellular recognition of these rust avirulence proteins implies that they are delivered into host cells across the plant membrane. Differences in the three AvrL567 protein sequences result from diversifying selection, which is consistent with a coevolutionary arms race.  相似文献   

20.
The complete nucleotide sequence of an active class I HLA gene, HLA-A3, has been determined. This sequence, together with that obtained for the HLA-CW3 gene, represents the first complete nucleotide sequence to be determined for functional class I HLA genes. The gene organisation of HLA-A3 closely resembles that of class I H-2 genes in mouse: it shows a signal exon, three exons encoding the three extracellular domains, one exon encoding the transmembrane region and three exons encoding the cytoplasmic domain. The complete nucleotide sequences of the active HLA genes, HLA-A3 and HLA-CW3, now permit a meaningful comparison of the nucleotide sequences of class I HLA genes by alignment with the sequence established for a HLA-B7-specific cDNA clone and the sequences of two HLA class I pseudogenes HLA 12.4 and LN- 11A . The comparisons show that there is a non-random pattern of nucleotide differences in both exonic and intronic regions featuring segmental homologies over short regions, which is indicative of a gene conversion mechanism. In addition, analysis of the frequency of nucleotide substitution at the three base positions within the codons of the functional genes HLA-A3, HLA-B7 and HLA-CW3 shows that the pattern of nucleotide substitution in the exon coding for the 3rd extracellular domain is consistent with strong selection pressure to conserve the sequence. The distribution of nucleotide variation in the other exons specifying the mature protein is nearly random with respect to the frequencies of substitution at the three nucleotide positions of their codons. The evolutionary implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号