首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During development, skeletal muscle precursor cells fuse to form multi-nucleated myotubes. However, it is unclear how this fusion is regulated such that linear myotubes are produced. In a previous study, we found that linear arrays of myoblasts cultured on micropatterns of laminin fused to form linear myotubes of a constant diameter, independent of the width of the laminin track. This suggested that a mechanism exists to prevent myoblasts from fusing laterally [Exp. Cell Res. 230 (1997) 275]. In this study, we have investigated this further by culturing myoblasts on ultrafine grooved surfaces previously shown to align fibroblasts and epithelial cells. We found that all the individual myoblasts were highly aligned along the groove axis, and time-lapse recordings showed that motility was mostly restricted to a direction parallel to the grooves. In contrast to the previous study, however, there was a strong tendency for early differentiating cells to form aggregates either at an angle of approximately 45 degrees or perpendicular to the groove axis. Nevertheless, we rarely saw myotubes formed at those angles, supporting our earlier idea that the ability of cells to fuse laterally is prohibited. Our data strongly suggest that myoblasts are most likely to fuse in an end-to-end configuration, and it is this that enables them to form linear, rather than irregular myotubes.  相似文献   

3.
The fusion of myoblasts.   总被引:15,自引:0,他引:15       下载免费PDF全文
  相似文献   

4.
Fusion of mononucleate myoblasts to form multinucleated myotubes increases when skeletal muscle cells are grown in progressively higher oxygen concentrations (5%, 20%, and 40% oxygen). At four days of growth fusion of myoblasts (as expressed by the percent of all muscle nuclei that are located in myotubes) is 57 ± 2% in 5% oxygen, 68 ± 1% in 20% oxygen, and 78 ± 2% in 40% oxygen (P<0.001). However, at a concentration of 40%, oxygen depresses the rate of cell division and thereby affects the number of myoblasts available for fusion. Thus, oxygen concentration significantly modifies growth of skeletal muscle in vitro. Its net effect on myotube formation results from the interaction of its separate effects to enhance cell fusion and to depress cell proliferation.  相似文献   

5.
Myoblast differentiation and fusion to multinucleated muscle cells can be studied in myoblasts grown in culture. Calpain (Ca2+-activated thiol protease) induced proteolysis has been suggested to play a role in myoblast fusion. We previously showed that calpastatin (the endogenous inhibitor of calpain) plays a role in cell membrane fusion. Using the red cell as a model, we found that red cell fusion required calpain activation and that fusibility depended on the ratio of cell calpain to calpastatin. We found recently that calpastatin diminishes markedly in myoblasts during myoblast differentiation just prior to the start of fusion, allowing calpain activation at that stage; calpastatin reappears at a later stage (myotube formation). In the present study, the myoblast fusion inhibitors TGF-β, EGTA and calpeptin (an inhibitor of cysteine proteases) were used to probe the relation of calpastatin to myoblast fusion. Rat L8 myoblasts were induced to differentiate and fuse in serum-poor medium containing insulin. TGF-β and EGTA prevented the diminution of calpastatin. Calpeptin inhibited fusion without preventing diminution of calpastatin, by inhibiting calpain activity directly. Protein levels of μ-calpain and m-calpain did not change significantly in fusing myoblasts, nor in the inhibited, non-fusing myoblasts. The results indicate that calpastatin level is modulated by certain growth and differentiation factors and that its continuous presence results in the inhibition of myoblast fusion.  相似文献   

6.
The development of the acetycholine receptors in chick embryo myoblasts from 11-day old embryos was studied in vitro. Using the purified α-bungarotoxin labeled with radioactive iodide, a high concentration of acetylcholine receptors was found in the prefusing myoblasts; most of these receptors were located in the interior of the myoblasts. However, upon the completion of myoblast fusion, the majority of the acetylcholine receptors appeared on the external cell surface of the myotubes.  相似文献   

7.
A rapid assay for fusion of embryonic chick myoblasts   总被引:1,自引:0,他引:1  
A rapid and sensitive assay for measuring myoblast fusion in suspension cultures of embryonic chick pectoral myoblasts is described. Fusion-competent cells are generated by growth in suspension using a low calcium medium. Fusion-promoting levels of calcium are added, and the suspensions incubated for 1–6 h. The cells are then trypsinized to disperse cellular aggregates and sized in a Coulter particle counter. This assay minimizes many of the artifacts inherent in measurements of fusion in monolayer cultures, and is designed for the rapid screening of agents for their effects on fusion.  相似文献   

8.
Leptin, a major regulator of body weight, was recently suggested to play a role in myoblasts. We conducted an experiment to determine whether leptin can influence the proliferation and differentiation of porcine skeletal myoblasts. Myoblasts occurred in non-leptin and leptin forms in various concentrations for various periods of cell states. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry assays demonstrated that leptin significantly promoted myoblast proliferation and increased cell accumulation in the S + G2/M phase, in a dose-dependent manner. Furthermore, in morphologic experiments, the formation of myotubes and the myogenic index was markedly reduced by leptin. In addition, biochemical analysis showed that leptin decreased creatine kinase (CK) activity and the amount of myogenin and myosin heavy chain (MyHC) protein. Taking all this together, our study indicated that exogenous leptin promoted proliferation but inhibited differentiation in porcine skeletal myoblasts, suggesting that leptin might be an important mediator in the regulation of the growth and development of muscle cells.  相似文献   

9.
A role for acetylcholine receptors in the fusion of chick myoblasts   总被引:5,自引:3,他引:2       下载免费PDF全文
The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha-bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha-bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion-inducing agent that activates the nicotinic ACh receptor.  相似文献   

10.
Okadaic acid was found to block membrane fusion of chick embryonic myoblasts in culture. It also induced morphological change of the cells from bipolar to spherical shape. These effects were dose-dependent, and could be reversed upon removal of the drug from the culture medium. It showed, however, no effect on the induction of muscle specific proteins including tropomyosin and creatine kinase. When okadaic acid was treated to the cell lysates, the phosphorylation state of many proteins significantly increased. These results suggest that the inhibition of myoblast fusion by okadaic acid may be mediated by the increase in the phosphorylation of certain, unknown protein(s) that regulate the fusion process.  相似文献   

11.
Myoblast aggregates provide a system for studying cell interactions which have several advantages over standard, stationary cultures. In gyrotory rotation, aggregate size can be controlled and is independent of cell migration. In muscle aggregates, fibroblasts are excluded, yet myoblast differentiation and fusion occur in a highly synchronous fashion. Specific PG binding occurs in chick or quail myoblast aggregates: in chick the peak of binding is at 35-36 hr. Aggregation is complete 16 hr before PG binding activity appears. This suggests either that gyrotory aggregation is not identical to myoblast recognition, or that PG binding activity occurs subsequent to myoblast recognition. Myoblast aggregates begin to release PG before 18 hr. The amount detected remains constant until binding begins at 34 hr when PG binding to the aggregates begins. Thus, both the release of PG and PG receptor activity are characteristics of the myoblasts and release of prostaglandin precedes appearance of the binding activity. As a first step in identifying the PG receptor and determining its appearance on the myoblast cell surface, we have prepared antisera against myoblast surfaces which blocks receptor-ligand interaction and have absorbed it against both peripheral and intrinsic membrane fractions. The results indicate that the PG receptor is a myoblast peripheral membrane macromolecule.  相似文献   

12.
13.
14.
Calpain isozymes (intracellular, Ca(2+)-dependent thiol proteases) are present in the cytoplasm of many cells, along with their endogenous specific inhibitor, calpastatin. Previously, we found that the levels of mu-calpain and m-calpain (activated by microM and mM Ca(2+), respectively) remain about the same during myoblast differentiation and fusion. By contrast, the calpastatin level, which is high during the initial stages of differentiation, diminishes markedly before myoblast fusion, allowing the proteolysis that is required for myotube formation. In the present study, we used immunoprecipitation to investigate the molecular association between calpain and calpastatin in dividing myoblasts and in the initial stages of myoblast differentiation. Immunoprecipitation (IP) was performed in two ways: (1) IP of calpain, using an anti-calpain antibody that recognized both isozymes; and (2) IP of calpastatin (using anti-calpastatin). Calpastatin was co-precipitated when calpain was immunoprecipitated; calpain was co-precipitated when calpastatin was immunoprecipitated. The results indicate that calpastatin is associated with calpain in dividing myoblasts and in myoblasts during the initial stages of differentiation, thereby preventing calpain activation at this stage. Prior studies carried out in vitro have shown a Ca(2+)-dependent interaction of calpain with calpastatin. The results described here suggest that an association between calpain and calpastatin could occur within cells in the presence of physiological Ca(2+)levels. It is proposed that the status of cellular calpain-calpastatin association is modulated by cell constituents, for which some possibilities are suggested.  相似文献   

15.
Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell–cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.  相似文献   

16.
17.
fu-1 cells, a line of rat myoblasts defective in differentiation, can be fused into multinucleate syncytia by Moloney murine leukemia virus. The effects of treating the virus with specific antibody, UV irradiation, and elevated temperature and the requirements for cellular RNA and protein synthesis have been studied as they relate to this virus-induced fusion. The results indicate that intact, but not necessarily infectious, virions are required to promote fusion of fu-1 cells. Neither actinomycin D nor cycloheximide altered the formation of syncytia; thus, neither viral nor cellular RNA or protein synthesis is required for fusion. fu-1 cells infected with the ts3 temperature-sensitive mutant of Moloney murine leukemia virus accumlate large amounts of budding virus on their cell membrane; however, this membrane-associated virus failed to induce syncytia. Upon release of the virus at the permissive temperature, fusion did occur. We conclude that contact or attachment of the immature virus to the cell membrane is not sufficient to promote murine leukemia virus-induced cell fusion; complete virions are required. From these data, we propose that adsorption and penetration of the virus may induce a change in the cell membrane that subsequently promotes the fusion of susceptible cells.  相似文献   

18.
miRNAs are increasingly being implicated as key regulators of cell proliferation, apoptosis, and differentiation. miRNA-34c appears to play a crucial role in cancer pathogenesis wherein it exerts its effect as a tumor suppressor. However, the role of miR-34c in myoblast proliferation remains poorly understood. Here, we found that overexpression miR-34c inhibited myoblasts proliferation by reducing the protein and mRNA expression of cell cycle genes. In contrast, blocking the function of miR-34c promoted myoblasts proliferation and increased the protein and mRNA expression of cell cycle genes. Moreover, miR-34c directly targeted YY1 and inhibited its expression. Similar to overexpression miR-34c, knockdown of YY1 by siRNA suppressed myoblasts proliferation. Our study provides novel evidence for a role of miR-34c in inhibiting myoblasts proliferation by repressing YY1. Thus, miR-34c has the potential to be used to enhance skeletal muscle development and regeneration.  相似文献   

19.
ADP-ribosylation factors (ARFs) are 19-21-kDa proteins purified from bovine brain that bind guanosine 5'-triphosphate (GTP). They exhibit GTP-dependent activity as activators of cholera toxin-catalyzed ADP-ribosylation of the alpha-subunit of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system (Gs alpha). ARF, which interacts directly with the catalytic subunit of cholera toxin, has no known physiologic role. Intracellular microinjection of ARF was employed to investigate the effect of ARF on progesterone- and insulin-stimulated maturation of Xenopus oocytes. Maturation was inhibited by injection of ARF 3-8 h before exposure of oocytes to progesterone or insulin. ARF inhibition was dependent on progesterone concentration but not on insulin concentration. Inhibition was enhanced by concomitant injection of GTP and to a greater extent by guanosine 5'-O-(thiotriphosphate) (GTP gamma S) which, in the absence of ARF, inhibited somewhat at early time points. The demonstration of this effect of ARF on both progesterone- and insulin-stimulated oocyte maturation may provide a clue to the physiologic role of this guanine nucleotide-binding protein.  相似文献   

20.
This study shows that sphingosine 1-phosphate (S1P) exerts an anti-migratory action in C2C12 myoblasts by reducing directional cell motility and fully abrogating the chemotactic response to insulin-like growth factor-1. The anti-migratory response to S1P required ligation to S1P(2), being attenuated in myoblasts where the receptor was down-regulated by specific antisense oligodeoxyribonucleotides or small interfering RNA (siRNA) and conversely potentiated in S1P(2)-overexpressing myoblasts. The investigation of RhoA and Rac GTPases, critically implicated in cell motility regulation, demonstrated that RhoA was rapidly activated by S1P, while Rac1 was unaffected within the first 5 min but stimulated thereafter. RhoA, but not Rac activation, was identified as a S1P(2)-dependent pathway in experiments in which receptor expression was attenuated by siRNA treatment or up-regulated by S1P(2)-encoding plasmid transfection. Finally, by expression of the dominant negative mutant of RhoA, the GTPase was found implicated in the anti-migratory action of S1P, whereas modulation of Rac1 functionality unaffected the anti-chemotactic effect of S1P, ruling out a role for this protein in the biological response. Since S1P was previously shown to inhibit myoblast proliferation and stimulate myogenesis, the here identified novel biological activity is in favour of a complex physiological role of the sphingolipid in the process of muscle repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号