共查询到20条相似文献,搜索用时 0 毫秒
1.
Activation of the canonical Wnt signalling pathway results in stabilisation and nuclear translocation of beta-catenin. In the absence of a Wnt signal, beta-catenin is phosphorylated at four conserved serine and threonine residues at the N-terminus of the protein, which results in beta-catenin ubiquitination and proteasome-dependent degradation. The phosphorylation of three of these residues, Thr41, Ser37, and Ser33, is mediated by glycogen synthase kinase-3 (GSK-3) in a sequential manner, beginning from the C-terminal Thr41. It has recently been shown that the GSK-3 dependent phosphorylation of beta-catenin requires prior priming through phosphorylation of Ser45. However, it is not known whether phosphorylation of Ser45 is carried out by GSK-3 itself or by an alternative kinase. In this study, the phosphorylation of beta-catenin at Ser45 was characterised using a phospho-specific antibody. GSK-3beta was found to be unable to phosphorylate beta-catenin at Ser45 in vitro and in intact cells. However, inhibition of GSK-3 in intact cells reduced Ser45 phosphorylation, suggesting that GSK-3 kinase activity is required for the phosphorylation event. In vitro, CK1, but not CK2, phosphorylates Ser45. Ser45 phosphorylation in intact cells is not mediated by CK1varepsilon, a known positive regulator of Wnt signalling, as overexpression of this kinase leads to decreased phosphorylation levels. In conclusion, phosphorylation of beta-catenin at the GSK-3 priming site Ser45 is not mediated by GSK-3 itself, but by an alternative kinase, indicating that beta-catenin is not an unprimed substrate for GSK-3 in vivo. Priming of GSK-3 dependent phosphorylation of beta-catenin by a different kinase could have important implications for the regulation of Wnt signalling. 相似文献
2.
Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. 总被引:29,自引:2,他引:29 下载免费PDF全文
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin. 相似文献
3.
4.
Nuclear beta-catenin displays GSK-3beta- and APC-independent proteasome sensitivity in melanoma cells 总被引:1,自引:0,他引:1
Bonvini P Hwang SG El-Gamil M Robbins P Kim JS Trepel J Neckers L 《Biochimica et biophysica acta》2000,1495(3):308-318
Colon carcinoma and melanoma cells containing either a deletion of the adenomatous polyposis coli tumor suppressor protein (APC) or mutation of the site in beta-catenin phosphorylated by glycogen synthase kinase-3beta (GSK-3beta) display elevated levels of detergent-soluble beta-catenin due to insensitivity of the cytosolic protein to proteasome-dependent degradation. In this study, we have examined the effect of beta-catenin mutation (S37F) or APC loss on the proteasome sensitivity of additional subcellular beta-catenin pools in melanoma cells. In contrast to detergent-soluble beta-catenin, the detergent-insoluble protein remains proteasome-sensitive irrespective of S37F mutation or APC status. This insoluble component appears associated primarily with nuclear cytoskeletal elements. In addition, DNase I treatment solubilized a portion of detergent-insoluble beta-catenin, suggesting that this fraction also contains chromatin-associated protein, and correlating with a proteasome-sensitive elevation in beta-catenin-stimulated reporter activity. Since the detergent-insoluble nuclear component of beta-catenin displays GSK-3beta- and APC-independent proteasome sensitivity, distinct from the soluble nuclear and cytosolic pools of this protein, regulation of beta-catenin proteasome sensitivity and the contribution of this process to beta-catenin function may be more complex than previously appreciated. 相似文献
5.
6.
7.
B Bax P S Carter C Lewis A R Guy A Bridges R Tanner G Pettman C Mannix A A Culbert M J Brown D G Smith A D Reith 《Structure (London, England : 1993)》2001,9(12):1143-1152
BACKGROUND: Glycogen synthase kinase-3 (GSK-3) sequentially phosphorylates four serine residues on glycogen synthase (GS), in the sequence SxxxSxxxSxxx-SxxxS(p), by recognizing and phosphorylating the first serine in the sequence motif SxxxS(P) (where S(p) represents a phosphoserine). FRATtide (a peptide derived from a GSK-3 binding protein) binds to GSK-3 and blocks GSK-3 from interacting with Axin. This inhibits the Axin-dependent phosphorylation of beta-catenin by GSK-3. RESULTS: Structures of uncomplexed Tyr216 phosphorylated GSK-3beta and of its complex with a peptide and a sulfate ion both show the activation loop adopting a conformation similar to that in the phosphorylated and active forms of the related kinases CDK2 and ERK2. The sulfate ion, adjacent to Val214 on the activation loop, represents the binding site for the phosphoserine residue on 'primed' substrates. The peptide FRATtide forms a helix-turn-helix motif in binding to the C-terminal lobe of the kinase domain; the FRATtide binding site is close to, but does not obstruct, the substrate binding channel of GSK-3. FRATtide (and FRAT1) does not inhibit the activity of GSK-3 toward GS. CONCLUSIONS: The Axin binding site on GSK-3 presumably overlaps with that for FRATtide; its proximity to the active site explains how Axin may act as a scaffold protein promoting beta-catenin phosphorylation. Tyrosine 216 phosphorylation can induce an active conformation in the activation loop. Pre-phosphorylated substrate peptides can be modeled into the active site of the enzyme, with the P1 residue occupying a pocket partially formed by phosphotyrosine 216 and the P4 phosphoserine occupying the 'primed' binding site. 相似文献
8.
The stimulatory effects of SH (sulfatide and heparin) and two phospholipids (PI and PS) on autophosphorylation of GSK-3beta and the GSK-3beta-mediated phosphorylation of myelin basic protein (MBP) and two synthetic MBP peptides (M86 and M156) were comparatively examined in vitro. It was found that (i) both PI and SH highly stimulated the GSK-3beta-mediated phosphorylation of MBP, but not glycogen synthase, and two MBP peptides through their direct binding to these substrates and (ii) both PI and heparin, as compared with sulfatide, highly stimulated autophosphorylation of GSK-3beta. The K(m) value of MBP for GSK-3beta was highly reduced and the V(max) value was significantly increased in the presence of these acidic modulators, which augmented further phosphorylation of MBP by the kinase. Under our experimental condition, similar stimulatory effects of PI and heparin were observed with the GSK-3beta-mediated phosphorylation of tau protein (TP) in vitro. These results presented here suggest that these two phospholipids and SH may function as effective stimulators for autophosphorylation of GSK-3beta and for the GSK-3beta-mediated high phosphorylation of SH-binding proteins, including MBP and TP, in the highly accumulated levels of these acidic and sulfated modulators in the brain. 相似文献
9.
Neurons are highly polarized and comprised of two structurally and functionally distinct parts, an axon and dendrites. We previously showed that collapsin response mediator protein-2 (CRMP-2) is critical for specifying axon/dendrite fate, possibly by promoting neurite elongation via microtubule assembly. Here, we showed that glycogen synthase kinase-3beta (GSK-3beta) phosphorylated CRMP-2 at Thr-514 and inactivated it. The expression of the nonphosphorylated form of CRMP-2 or inhibition of GSK-3beta induced the formation of multiple axon-like neurites in hippocampal neurons. The expression of constitutively active GSK-3beta impaired neuronal polarization, whereas the nonphosphorylated form of CRMP-2 counteracted the inhibitory effects of GSK-3beta, indicating that GSK-3beta regulates neuronal polarity through the phosphorylation of CRMP-2. Treatment of hippocampal neurons with neurotrophin-3 (NT-3) induced inactivation of GSK-3beta and dephosphorylation of CRMP-2. Knockdown of CRMP-2 inhibited NT-3-induced axon outgrowth. These results suggest that NT-3 decreases phosphorylated CRMP-2 and increases nonphosphorylated active CRMP-2, thereby promoting axon outgrowth. 相似文献
10.
The efficiency of oxidative phosphorylation was estimated in intact resting cells of Escherichia coli K 12, strain PA 601 (chl-s) and its chl-r mutants, all of them grown anaerobically in the presence of nitrate. The oxidation of endogenous NADH in intact chl-s cells was accompanied by the formation of ATP whatever the terminal electron acceptor, oxygen or nitrate, so that it was possible to conclude that the energy conservation sites are operating with either of the two acceptors in cells grown anaerobically in the presence of nitrate. For chl-r mutants oxidation of endogenous NADH correlated with ATP-production was found only with oxygen as electron acceptor. It is concluded that the energy-conservation sites are preserved in these mutants, the nitrate respiratory chain of which is altered. This assumption is corroborated by the effects of uncouplers of oxidative phosphorylation on ATP-synthesis. 相似文献
11.
Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice 总被引:24,自引:0,他引:24
Glycogen synthase kinase-3beta (GSK-3beta) has been postulated to mediate Alzheimer's disease tau hyperphosphorylation, beta-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3beta in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear beta-catenin and hyperphosphorylation of tau in hippocampal neurons, the latter resulting in pretangle-like somatodendritic localization of tau. Neurons displaying somatodendritic localization of tau often show abnormal morphologies and detachment from the surrounding neuropil. Reactive astrocytosis and microgliosis were also indicative of neuronal stress and death. This was further confirmed by TUNEL and cleaved caspase-3 immunostaining of dentate gyrus granule cells. Our results demonstrate that in vivo overexpression of GSK-3beta results in neurodegeneration and suggest that these mice can be used as an animal model to study the relevance of GSK-3beta deregulation to the pathogenesis of Alzheimer's disease. 相似文献
12.
13.
14.
Provost E Yamamoto Y Lizardi I Stern J D'Aquila TG Gaynor RB Rimm DL 《The Journal of biological chemistry》2003,278(34):31781-31789
beta-Catenin-mediated signaling can be constitutively activated by truncation or mutation of serine and threonine residues in exon 3. Mutations in this region are observed in many human tumors. Examination of the locations of these mutations reveals interesting patterns; specifically, Ser45 and Thr41 appear more frequently in malignant tumors, and Ser37 and Ser33 are more common in benign entities. To test whether these patterns represent functional differences in beta-catenin signaling mechanisms, we generated mutations of each of these residues. Stable transformation of Madin-Darby canine kidney cells showed a transformed phenotype with each of the four mutations, as assessed by growth in soft agar and collagen. Functional assays including proliferation assays, cell shedding assays, and wounding assays demonstrated two groups. Ser45 and Thr41 represent a more transformed phenotype, whereas Ser37 and Ser33 behaved similarly to the vector in these assays. Assessment of downstream genes demonstrated increased activation of the beta-catenin target gene cyclin D1 by Ser45. Finally, we examined the kinase activity of I kappa B kinase-alpha and found that this kinase, unlike glycogen synthase kinase-3 beta, appears to preferentially phosphorylate Ser45 and Thr41, independent of priming by casein kinase-1. We conclude that these sites may represent an alternative (non-wnt) signaling pathway, which may be inappropriately activated in tumors with mutations of these residues. 相似文献
15.
16.
Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin 总被引:4,自引:0,他引:4
Ding Q Xia W Liu JC Yang JY Lee DF Xia J Bartholomeusz G Li Y Pan Y Li Z Bargou RC Qin J Lai CC Tsai FJ Tsai CH Hung MC 《Molecular cell》2005,19(2):159-170
Beta-catenin is upregulated in many human cancers and considered to be an oncogene. Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies, and individuals who are chronic hepatitis B virus (HBV) carriers have a greater than 100-fold increased relative risk of developing HCC. Here we report a mechanism by which HBV-X protein (HBX) upregulates beta-catenin. Erk, which is activated by HBX, associates with GSK-3beta through a docking motif ((291)FKFP) of GSK-3beta and phosphorylates GSK-3beta at the (43)Thr residue, which primes GSK-3beta for its subsequent phosphorylation at Ser9 by p90RSK, resulting in inactivation of GSK-3beta and upregulation of beta-catenin. This pathway is a general signal, as it was also observed in cell lines in which Erk-primed inactivation of GSK-3beta was regulated by IGF-1, TGF-beta, and receptor tyrosine kinase HER2, and is further supported by immunohistochemical staining in different human tumors, including cancers of the liver, breast, kidney, and stomach. 相似文献
17.
Okamura H Yoshida K Sasaki E Qiu L Amorim BR Morimoto H Haneji T 《Cell biology international》2007,31(2):119-125
PTEN is a tumor suppressor gene encoding a phosphatase, and it negatively regulates cell survival mediated by the phosphoinositol 3-kinase (PI3-Kinase)-Akt pathway. To elucidate PTEN expression and its effect on the PI3-kinase-Akt pathway in fibroblasts and macrophages, we investigated the expression of PTEN and the phosphorylation status of Akt in NIH3T3 and RAW264.7 cells treated with LPS. Phosphorylation of Akt was induced by LPS treatment in a dose-dependent manner in RAW264.7 cells, but not in NIH3T3 cells. LPS induced the expression of PTEN in a dose and time-dependent manner in NIH3T3 cells (0-1 microg/ml, 0-6h). However, LPS did not stimulate PTEN expression in RAW264.7 cells. These data indicate the existence of diverse mechanisms for PTEN expression and Akt activation in fibroblasts and macrophages. RNA interference using double-stranded RNA specific for the PTEN gene reduced both mRNA and protein levels of PTEN in NIH3T3 cells treated or not with LPS. The phosphorylation status of Akt in NIH3T3 cells stimulated with LPS did not change when the PTEN expression had been inhibited by RNA interference. The present results suggest that the up-regulation of PTEN expression by LPS is not involved in the activation of Akt in NIH3T3 cells. PTEN expression might be involved in the diverse inflammatory responses to LPS in fibroblasts and macrophages. 相似文献
18.
19.
An improved method for isolation of mutator mutants from mouse FM3A cells and their characterization
An improved method to select mutator mutants was developed. By this new method, mutator mutants were isolated efficiently, and 7 mutants were obtained from cultured mouse FM3A cells. These mutator mutants have an elevated rate of spontaneous mutation at 3 genetic loci (resistance to ouabain, blasticidin S, and tunicamycin). The sensitivity of these mutants to aphidicolin and arabinofuranosylcytosine was the same as in the wild-type cells. Determination of the size of the cellular dNTP pool revealed that there was no large imbalance in the precursor pool in the mutator mutants. These results suggested that the mutator character may be due to alteration in some factor(s) correlated directly to DNA replication. Also, there was no change in the sensitivity of all these mutator mutants to DNA damaging agents. 相似文献
20.
Involvement of GSK-3beta and DYRK1B in differentiation-inducing factor-3-induced phosphorylation of cyclin D1 in HeLa cells 总被引:1,自引:0,他引:1
Takahashi-Yanaga F Mori J Matsuzaki E Watanabe Y Hirata M Miwa Y Morimoto S Sasaguri T 《The Journal of biological chemistry》2006,281(50):38489-38497
Differentiation-inducing factors (DIFs) are putative morphogens that induce cell differentiation in Dictyostelium discoideum. We previously reported that DIF-3 activates glycogen synthase kinase-3beta (GSK-3beta), resulting in the degradation of cyclin D1 in HeLa cells. In this study, we investigated the effect of DIF-3 on cyclin D1 mutants (R29Q, L32A, T286A, T288A, and T286A/T288A) to clarify the precise mechanisms by which DIF-3 degrades cyclin D1 in HeLa cells. We revealed that T286A, T288A, and T286A/T288A mutants were resistant to DIF-3-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr(286) and Thr(288) were critical for cyclin D1 degradation induced by DIF-3. Indeed, DIF-3 markedly elevated the phosphorylation level of cyclin D1, and mutations introduced to Thr(286) and/or Thr(288) prevented the phosphorylation induced by DIF-3. Depletion of endogenous GSK-3beta and dual-specificity tyrosine phosphorylation regulated kinase 1B (DYRK1B) by RNA interference attenuated the DIF-3-induced cyclin D1 phosphorylation and degradation. The effect of DIF-3 on DYRK1B activity was examined and we found that DIF-3 also activated this kinase. Further, we found that not only GSK-3beta but also DYRK1B modulates cyclin D1 subcellular localization by the phosphorylation of Thr(288). These results suggest that DIF-3 induces degradation of cyclin D1 through the GSK-3beta- and DYRK1B-mediated threonine phosphorylation in HeLa cells. 相似文献