首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter ghanaensis" (A. syzygii-like).  相似文献   

2.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   

3.
Lactic acid bacteria populations of red wine samples from industrial fermentations, including two different vinification methods were studied. For this investigation, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis was employed to supplement previous results that were obtained by culture-dependent methods. PCR-DGGE was aimed to study two targeted genes, 16S ribosomal DNA (rDNA) and rpoB, and the results were useful to evaluate the microbial populations in wine samples. Moreover, an improvement of a detection limit determined so far for DGGE analysis was obtained with the method described in this study, what made possible to identify lactic acid bacteria populations below 101 colony-forming unit/mL. The species Oenococcus oeni was the most frequently detected bacterium, but identifications close to species Oenococcus kitaharae and Lactococcus lactis that are not often found in wine were firstly identified in samples of this research. PCR-DGGE allowed to detect 9 out of 11 lactic acid bacteria species identified in this study (nine by PCR-16S rDNA/DGGE and four by PCR-rpoB/DGGE), while five species were detected using the modified de Man, Rogosa and Sharpe agar. Therefore, the two methods were demonstrated to be complementary. This finding suggests that analysis of the lactic acid bacteria population structure in wine should be carried out using both culture-dependent and culture-independent techniques with more than one primer pair.  相似文献   

4.
The microflora of a self-heating aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste was investigated by a combination of culture and culture-independent techniques. The temperature increased quickly in the first hours of the treatment cycles and values up to 72°C were reached. Denaturing gradient gel electrophoresis of the PCR-amplified V3 region of 16S rDNA (PCR-DGGE) revealed important changes in the bacterial community during 3-day cycles. A clone library was constructed with the near-full-length 16S rDNA amplified from a mixed-liquor sample taken at 60°C. Among the 78 non-chimeric clones analysed, 20 species (here defined as clones showing more than 97% sequence homology) were found. In contrast to other culture-independent bacterial analyses of aerobic thermophilic wastewater treatments, species belonging to the Bacilli class were dominant (64%) with Bacillus thermocloacae being the most abundant species (38%). The other Bacilli could not be assigned to a known species. Schineria larvae was the second most abundant species (14%) in the clone library. Four species were also found among the 19 strains isolated, cultivated and identified from samples taken at 40°C and 60°C. Ten isolates showed high 16S rDNA sequence homology with the dominant bacterium of a composting process that had not been previously isolated.An erratum to this article can be found at  相似文献   

5.
To investigate changes in the bacterial species and hygienic safety of the biofilm at the end of the drinking water distribution system in Seoul (Korea), denaturing gradient gel electrophoresis (DGGE) and DNA sequencing were used to analyse the bacterial population in the biofilm of a semi-pilot galvanized iron pipe model. The presence of sequences from aerobic Sphingomonas sp., anaerobic Rhodobacter sp., and unculturable bacteria indicated that these organisms coexisted after 1 day of model operation, demonstrating the ease of biofilm formation on galvanized iron pipes in the end region of the water distribution system studied. Sequences similar to those of unculturable bacteria, E. coli, and anaerobic bacteria were detected during the course of succession on the biofilm. More complicated band patterns were observed after 70 days of operation. PCR-DGGE illustrated changes in the biofilm during succession as well as the possibilities of anaerobic conditions and faecal contamination of the drinking water system. PCR-DGGE and culture-dependent fatty acid methyl ester (FAME) analysis showed different patterns for the same samples (Lee & Kim 2003); however, PCR-DGGE showed less diversity than did FAME analysis. This study compared the culture-dependent FAME and culture-independent PCR-DGGE methods directly, and their use in promoting the hygienic safety of drinking water.  相似文献   

6.
Yeast diversity during fermentation of grated cassava for gari production in Nigeria was studied using culture independent methods based on Eukarya18S rDNA and the PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). DNA extracted directly from the grated cassava at different fermentation time regimes, as well as bulk cells generated from different viable count agar plates were used as template for amplification of 18S rDNA gene in a PCR experiment. Analysis of the 18S rDNA gene by sequencing of the PCR-DGGE band fragments revealed closest relative of Issatchenkia scutulata, Candida rugopelliculosa, Candida maritime, Zygosaccharomyces rouxii and Galactomyces geotricum as member of yeast community involved with the fermentation. PCR-DGGE can be useful for yeast in situ profiling during fermentation; this will contribute to safety of traditional fermented foods and optimization during large scale production of gari.  相似文献   

7.
The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing.  相似文献   

8.
传统分离培养结合DGGE法检测榨菜腌制过程的细菌多样性   总被引:6,自引:0,他引:6  
采用传统分离培养和基于16S rRNA 作为分子标记的变性梯度凝胶电泳(Denaturing gradient gel electrophoresis, DGGE)的方法, 分析榨菜腌制过程中不同时期的可培养细菌数量、多样性及其群落结构。结果表明, 用传统分离与分子鉴定方法获得7个属的细菌类群, 其中乳杆菌属(Acidobacterium)是优势菌群, 明串珠菌属(Leuconostoc)是次优势菌群。对通过DGGE方法得到的11条16S rRNA优势条带序列进行了比对, 结果表明明串珠菌属(Leucon  相似文献   

9.
Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.  相似文献   

10.
Fermentation of capers (the fruits of Capparis sp.) was studied by molecular and culture-independent methods. A lactic acid fermentation occurred following immersion of caper berries in water, resulting in fast acidification and development of the organoleptic properties typical of this fermented food. A collection of 133 isolates obtained at different times of fermentation was reduced to 75 after randomly amplified polymorphic DNA (RAPD)-PCR analysis. Isolates were identified by PCR or 16S rRNA gene sequencing as Lactobacillus plantarum (37 isolates), Lactobacillus paraplantarum (1 isolate), Lactobacillus pentosus (5 isolates), Lactobacillus brevis (9 isolates), Lactobacillus fermentum (6 isolates), Pediococcus pentosaceus (14 isolates), Pediococcus acidilactici (1 isolate), and Enterococcus faecium (2 isolates). Cluster analysis of RAPD-PCR patterns revealed a high degree of diversity among lactobacilli (with four major groups and five subgroups), while pediococci clustered in two closely related groups. A culture-independent analysis of fermentation samples by temporal temperature gradient electrophoresis (TTGE) also indicated that L. plantarum is the predominant species in this fermentation, in agreement with culture-dependent results. The distribution of L. brevis and L. fermentum in samples was also determined by TTGE, but identification of Pediococcus at the species level was not possible. TTGE also allowed a more precise estimation of the distribution of E. faecium, and the detection of Enterococcus casseliflavus (which was not revealed by the culture-dependent analysis). Results from this study indicate that complementary data from molecular and culture-dependent analysis provide a more accurate determination of the microbial community dynamics during caper fermentation.  相似文献   

11.
Characterization of Bdellovibrio- and like organisms (BALOs) from environmental samples involves growing them in the presence of Gram-negative prey bacteria and isolation of BALO plaques. This labor-intensive enrichment and isolation procedure may impede the detection and phylogenetic characterization of uncultivable BALOs. In this article, we describe a simple slide biofilm assay to improve detection and characterization of BALO microbiota. Agar spiked with biostimulants such as yeast extract (YE), casamino acids (CA), or concentrated cells of Vibrio parahaemolyticus P5 (most widely used prey bacteria for isolation of halophilic BALOs) was plated onto buffed glass slides and exposed to water samples collected from Apalachicola Bay, Florida. After incubating for a week, diversity of the biofilm bacterial community was studied by culture-dependent and culture-independent molecular methods. The results revealed that most probable numbers (MPNs) of BALOs and total culturable bacteria recovered from YE agar slide were significantly higher than the numbers on CA- or P5-spiked agar slides. Polymerase chain reaction–restriction fragment length polymorphism followed by 16S rDNA sequencing of clones from different biostimulants resulted in identification of a plethora of Gram-negative bacteria predominantly from the alpha, gamma, delta-proteobacteria, and the Cytophaga–Flavobacterium–Bacteroides group. Corresponding to the higher biomass on the YE agar slide, the BALO clone library from YE was most diverse, consisting of Bacteriovorax spp. and a novel clade representing Peredibacter spp. Microbiota from all three biostimulated biofilms were exclusively Gram-negative, and each bacterial guild represented potential prey for BALOs. We propose the use of this simple yet novel slide biofilm assay to study oligotrophic aquatic bacterial diversity which could also potentially be utilized to isolate marine bacteria with novel traits.  相似文献   

12.
Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera) alimentary tract, and food stored in the hive (honey and packed pollen or “beebread”). We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop), midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota, and the identification of factors that may affect bacterial detection and transmission, colony food storage and disease susceptibility.  相似文献   

13.
Bursaphelenchus mucronatus is a plant–parasitic nematode widely existing in Eurasian pine forests. To analyze the diversity and role of bacteria associated with the nematode, culture-dependent and culture-independent methods were used to identify and characterize the composition of bacterial community. A total of 13 bacterial isolates were obtained from B. mucronatus by the culture-dependent method. Sixty-four species of bacteria were identified from two 16S rDNA clone libraries constructed from the nematodes of a Chinese and a Japanese population. These bacteria were clustered into four groups: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Comparison of the two libraries showed that the Chinese library had a higher diversity than that of the Japanese library, and the dominant group and species in each library were also different. In the Japanese library, Alphaproteobacteria group was obviously dominant (60.3%), and Rhizobium sp. was the most dominant species. Whereas in the Chinese library the proportion of each group was similar (from 19.4 to 23.6%), and Pedobacter sp. was a slightly dominant species. Moreover, 18 operational taxonomic units (OTUs) were obtained from each of the two libraries according to a 97% sequence similarity. Metabolic analysis showed that 61.5 and 38.5% of the bacterial isolates could have protease and lipase activities, respectively. But only one had cellulase activity. Testing of reproductive parameter showed that the wild-type nematodes (bacteria carried) could produce more progeny than the bacterium-free nematodes did. So, we speculated that bacteria could promote the propagation and development of the nematode B. mucronatus.  相似文献   

14.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

15.
The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.  相似文献   

16.
Aims: To investigate microbial diversity and population dynamics of spoilage-sensitive modified-atmosphere-packaged (MAP) artisan-type cooked ham in relation to storage temperature. Methods and Results: Modified-atmosphere-packaged cooked ham samples were stored at different temperatures (4, 7, 12 and 26°C). Traditional methods were combined with polymerase chain reaction (PCR)-based techniques, i.e. a culture-dependent, repetitive DNA sequence-based method (rep-PCR) and a culture-independent approach (PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments; PCR-DGGE). rep-PCR on DNA extracted from MRS isolates indicated that Leuconostoc carnosum and Enterococcus faecalis prevailed at all temperatures, with the latter becoming more important above 7°C. PCR-DGGE indicated the additional presence of Carnobacterium divergens and Brochothrix thermosphacta at all temperatures. Discriminant analysis related variation within the Leuc. carnosum cluster to the storage temperature. High performance liquid chromatography revealed that lactic acid was the main metabolite because of glucose consumption. Conclusions: Leuconostoc carnosum, C. divergens, E. faecalis and Br. thermosphacta are the main spoilage bacteria of artisan-type MAP cooked ham. Their population dynamics are affected by storage temperature. Significance and Impact of the Study: Temperature can condition the development of spoilage in artisan-type MAP cooked ham, acting at both species and biotype level.  相似文献   

17.
Bdellovibrio-and-like organisms (BALOs) are widespread obligatory predators of other Gram-negative bacteria. Their detection by culture-dependent methods is complicated as their replication is totally dependent upon the availability of an appropriate prey. Because BALOs do not form numerically dominant groups within microbial communities, non-specific culture-independent tools also generally fail to detect them. We designed sets of 16S rRNA primers that specifically target BALOs. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined, yielding partial 16S rDNA sequences. This simple method that allows specific in situ culture-independent detection of BALOs was applied to the soil environment. Bdellovibrio-and-like organisms were also isolated from the same soil and the phylogeny and prey range of the isolates analysed. Seventeen isolates retrieved using five different potential preys exhibited eight different spectra of prey utilization and formed nine operational taxonomic units (OTUs). These OTUs were affiliated with the Bdellovibrionaceae, Bacteriovorax, Peredibacter or Micavibrio, i.e. the known BALO groups. In comparison, 15 OTUs including 10 that were not detected by the culture-dependent approach were obtained using the specific primers in a PCR-DGGE approach. The occurrence of a complex BALO community suggests that predation occurs on a much wider range of prey than can be detected by the classical culture-dependent technique.  相似文献   

18.
The structure of the microbial rhizoplane community of the important crop plant oilseed rape was studied by using a culture-dependent as well as a culture-independent approach based on 16S rDNA amplification. After isolation of the microbial community from the rhizoplane of oilseed rape (Brassica napus cv. Westar), the collected suspension was divided into two parts. One part was used for cultivation of bacteria onto three different growth media to establish a culture collection. From the other part of the rhizoplane suspension, genomic DNA was isolated and purified. Thereafter, 16S rDNA was amplified by PCR and cloned to obtain a library of 16S rDNA genes representative for the bacterial communities of this habitat. Phylogenetic 16S rDNA sequence analysis of 103 clones of this library revealed considerable differences from the corresponding nucleotide sequences of 111 cultured bacteria. Whereas the 16S rDNA clone library was dominated by a-Proteobacteria and bacteria of the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum (51% and 30%, respectively), less than 17% of the cultured bacteria belonged to these two groups. More than 64% of the cultivated isolates were allocated to the b- and g-subclasses of the Proteobacteria, which were present in the clone library at about 14%. Most of the clones of the a-Proteobacteria of the library showed highest similarity to Bradyrhizobium sp. No such bacteria were found in the culture collection. Similarly, the second dominant group of the clone library comprising members of the CFB phylum was represented in the culture collection by a single isolate. The phylogenetic analysis of isolates of the culture collection clearly emphasized the need to use different growth media for recovery of rhizoplane bacteria. Whereas most of the a-Proteobacteria were recovered on complex medium, most of the b-Proteobacteria were isolated onto minimal media. Our results demonstrate that the combined approach pursued in this paper is necessary to explore the biodiversity of bacterial rhizoplane communities.  相似文献   

19.
The present study aimed to evaluate the dominant microbial community naturally present in the Planalto de Bolona cheese, produced in the Cape Verde Islands. Samples of milk, curd and cheese from two different producers were examined through culture-dependent and independent-methods. Traditional plating and genetic identification of lactic acid bacteria (LAB) and yeast isolates were carried out. Moreover, DNA and RNA extracted directly from samples were subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Concerning the LAB population, a total of 278 isolates were identified: Lactococcus lactis subsp. lactis and Enterococcus faecium represented the most isolated species. Regarding yeasts, the analysis of isolates throughout the manufacturing period showed a consistent presence of the genus Candida. Divergences in species detection between culture-dependent and culture-independent methods were observed, as well as between DNA and RNA analysis. PCR-DGGE underlined high heterogeneity among bacterial species while yeast microbiota was dominated by Aureobasidium pullulans at DNA level. The obtained results represent a first approach in the understanding of the Planalto de Bolona cheese microbial ecology and consequently may constitute a first step towards the full comprehension of the microbiota of this artisanal cheese produced in unusual environmental conditions in the Cape Verde Islands.  相似文献   

20.
【目的】基于比较基因组分析,探究镇江香醋醋醅中不同醋酸菌的功能差异。【方法】利用分离培养技术结合16SrRNA基因全长测序获得不同分类地位的醋酸菌;应用比较基因组学结合发酵性能实现不同醋酸菌生长和代谢的差异比较。【结果】巴氏醋杆菌和欧洲驹形杆菌为镇江香醋醋醅中的主要醋酸菌。其中,欧洲驹形杆菌的GC含量更高、基因组更大。功能注释结果表明巴氏醋杆菌和欧洲驹形杆菌的碳水化合物、氨基酸相关基因数量及种类差异较大,欧洲驹形杆菌的碳水化合物活性酶数量更多。相比巴氏醋杆菌,欧洲驹形杆菌中富集的功能差异基因主要参与磷酸戊糖途径、脂肪酸生物合成、果糖和甘露糖代谢等代谢途径。验证结果表明欧洲驹形杆菌可通过产生更多的乙醇脱氢酶、乙醛脱氢酶和大量的ATP,并改变细胞膜脂肪酸组成来提高乙醇的转化率。【结论】明确了巴氏醋杆菌和欧洲驹形杆菌基因之间的差异。欧洲驹形杆菌通过更多的能量积累、更高的乙醇转化相关酶酶活力和细胞膜脂肪酸组成的改变,来改善胞内微环境以适应高酸环境。本研究得到的结果可加深对不同醋酸菌耐酸机制的理解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号