首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  L.  Shang  Y. K.  Li  L.  Chen  Y. H.  Qin  Z. Z.  Zhou  L. J.  Yuan  M.  Ding  C. B.  Liu  J.  Huang  Y.  Yang  R. W.  Zhou  Y. H.  Liao  J. Q. 《Photosynthetica》2018,56(4):1346-1352
Photosynthetica - In order to understand better Cd resistance in soybean, Dongying wild soybean treated with different Cd concentrations were evaluated. The biomass, chlorophyll (Chl) content, leaf...  相似文献   

2.
干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响   总被引:24,自引:1,他引:24  
采用水培试验方法,以2个耐旱性不同的小麦品种(敏感型望水白和耐旱型洛旱7号)为材料,研究了干旱胁迫对小麦幼苗根系形态、生理特性以及叶片光合作用的影响,以期揭示小麦幼苗对干旱胁迫的适应机制.结果表明: 干旱胁迫下,2个小麦品种幼苗的根系活力显著增大,而根数和根系表面积受到抑制;干旱胁迫降低了望水白的叶片相对含水量,提高了束缚水/自由水,而对洛旱7号无显著影响;干旱胁迫降低了2个小麦品种叶片的叶绿素含量、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度,但随胁迫时间的延长,洛旱7号的叶绿素含量和净光合速率与对照差异不显著;干旱胁迫降低了2个小麦品种幼苗的单株叶面积,以及望水白的根系、地上部和植株生物量,而对洛旱7号无显著影响.水分胁迫下,耐旱型品种可以通过提高根系活力、保持较高的根系生长量来补偿根系吸收面积的下降,保持较高的根系吸水能力,进而维持较高的光合面积和光合速率,缓解干旱对生长的抑制.  相似文献   

3.
Parsley (Petroselinum hortense L.) plants cultivated under controlled conditions were exposed to different doses of cadmium to investigate the antioxidant capacity and cadmium accumulation in the samples. Two-months-old parsley seedlings were treated with four different concentrations of CdCl2 (0, 75, 150, and 300 μM) for fifteen days. Cadmium level in leaves increased significantly by increasing the Cd contamination in the soil. Total chlorophyll and carotenoid content declined considerably with Cd concentration. Cd treatment caused a significant increase lipid peroxidation in tissue of leaf. Superoxide dismutase activity (SOD, EC 1.15.1.1) increased partially at 75 and 150 μM CdCl2 concentrations whereas the activity decreased at 300 μM CdCl2. Catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were reduced by Cd application. Total phenolic compound amount increased significantly with increasing Cd concentration, as ferric reduction power, superoxide anion radical, and DPPH˙ free radical scavenging activities elevated slightly by the concentration. These results suggest that antioxidant enzymes activities were repressed depending on accumulation of cadmium in leaves of parsley while the non-enzymatic antioxidant activities slightly increased.  相似文献   

4.
镉胁迫对小麦幼苗生长及生理特性的影响   总被引:62,自引:7,他引:62  
主要研究了重金属Cd污染对小麦生长和部分生理特性的影响。结果表明,叶绿素含量在0 2 5mmol·L-1Cd处理浓度时达到峰值,随Cd浓度的增加,含量下降。超氧化物歧化酶(SOD)、过氧化物酶(POD)活性随Cd浓度的增加而增加。丙二醛含量和细胞膜透性同样呈上升趋势。根系活力表现为先升高后下降的变化趋势。Cd胁迫下,小麦的生长受到一定程度的抑制,并随溶液中Cd浓度的增加,抑制加重  相似文献   

5.

Background  

Cadmium (Cd) concentrations in durum wheat (Triticum turgidum L. var durum) grain grown in North American prairie soils often exceed proposed international trade standards. To understand the physiological processes responsible for elevated Cd accumulation in shoots and grain, Cd uptake and translocation were studied in seedlings of a pair of near-isogenic durum wheat lines, high and low for Cd accumulation in grain.  相似文献   

6.
外源脯氨酸对镉胁迫下小麦幼苗生长的影响   总被引:7,自引:0,他引:7  
以高蛋白小麦品种“北农9549”为试材,研究喷施不同浓度脯氨酸(0、1.0、5.0和10.0 mmol·L-1)对镉胁迫下小麦幼苗生长和重金属吸收的影响.结果表明:以不施镉为对照,1.0 mmol·L-1CdCl2胁迫下,小麦幼苗的根长、株高和干质量分别显著下降24.0%、15.0%和27.5%,叶绿素a、b和类胡萝卜素含量分别显著下降23.3%、6.7%和30.8%,超氧化物歧化酶(SOD)活性降低了18.4%,内源脯氨酸、抗坏血酸和丙二醛(MDA)含量分别显著上升78.6%、31.5%和17.9%,细胞膜相对透性显著升高24.8%,过氧化物酶(POD)活性为对照的2.4倍,并且促进对铜的吸收,抑制锌的吸收.随外源脯氨酸浓度的增加,小麦幼苗的根长、株高、干质量、叶绿素和类胡萝卜素含量均逐渐恢复到对照水平,抗坏血酸、内源游离脯氨酸含量和SOD活性均上升,可溶性蛋白含量先上升后下降,POD活性、MDA含量和细胞膜相对透性下降,而锌积累量升高,镉、铜积累量下降.叶面喷施外源脯氨酸可缓解镉对小麦幼苗生长的胁迫,以喷施5.0~10.0 mmol·L-1外源脯氨酸效果最佳.  相似文献   

7.
镉胁迫对不同品种小麦幼苗生长和生理特性的影响   总被引:3,自引:0,他引:3  
以4个小麦品种(豫麦4、扬麦15、宝丰7228和宁麦13)为材料,研究了镉胁迫对水培条件下小麦幼苗生长和抗氧化酶系统的影响.结果表明:镉胁迫条件下植株的生长、叶绿素合成及硝酸还原酶活性明显受到抑制;植株体内与氧化胁迫有关的CAT和POD活性下降,H2O2和MDA含量上升;4个品种在镉处理后生长抑制和氧化胁迫程度上表现不同,显示出对镉耐性的差异,其中扬麦15对镉耐性高于其他3个品种.  相似文献   

8.
彭向永  宋敏 《生态学报》2011,31(12):3504-3511
采用滤纸培养法,研究了不同浓度的L-半胱氨酸(L-Cys)对200μmol/L铜离子胁迫下小麦幼苗生长、铜积累量、和抗氧化系统的影响。结果表明,(1)200μmol/L的铜离子可抑制小麦幼苗生长,使根长、生物量、总叶绿素含量极显著下降,可溶性蛋白和还原性谷胱甘肽(GSH)含量,超氧化物歧化酶(SOD)和抗坏血酸氧化酶(APX)活性略微上升,丙二醛(MDA)含量和细胞膜透性极显著上升。(2)外源Cys在1.0—5.0mmol/L时,受铜胁迫的小麦幼苗生长势与对照无差异,在1.0和2.5mmol/L下,根长、生物量、叶绿素a和总叶绿素含量与对照无显著差异,与Cu处理组差异显著(P<0.01)。(3)高于1.0mmol/L的外源Cys可极显著增加铜胁迫下小麦叶片和根系中的铜积累量。(4)外源Cys极显著提高了铜胁迫下小麦幼苗可溶性蛋白和GSH含量,并使SOD和APX活性持续维持在较低水平;外源Cys浓度低于2.5mmol/L时,MDA含量极显著下降,低于5.0mmol/L时,细胞膜透性极显著升高;多酚氧化酶(PPO)活性先上升后下降,除Cys为0.5mmol/L处理外,其它各处理间PPO活性均无显著差异。综合来看,喷施1.0—2.5mmol/L的外源Cys可提高小麦幼苗对铜胁迫的耐受性。  相似文献   

9.
以两种菊芋(Helianthus tuberosus L.)品系南芋2号(NY2)和南芋5号(NY5)为材料,研究了外源24-表油菜素内酯(24-EBL)对镉胁迫下菊芋幼苗干重、根冠比(R/S)、光合色素含量、叶片气体交换参数和水分利用效率(WUE)的调节效应,还测定了其不同器官的镉(Cd)含量.结果表明:在镉胁迫下,2种菊芋幼苗的干重、R/S、光合色素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、WUE均呈下降趋势,而胞间二氧化碳浓度(Ci)升高.(2)与镉胁迫相比,胁迫下外源喷施10-10、10-9、10-8、10-7mol/L 24-EBL作用下,两品系植株干重和R/S值均不同程度的上升,NY2、NY5的植株干重分别在10-9 mol/L 24-EBL(EBL2)和10-8mol/L 24-EBL(EBL3)处理下达到最大值,分别增加50%和64%.镉胁迫下,外源24-EBL处理均提高菊芋的叶绿素(Chl)和类胡萝卜素(Car)含量,Pn、Gs、Tr也由此得到不同程度的上升,而Ci均下降,NY5的Ci下降更显著.镉胁迫下,外源EBL2和EBL3作用下均不同程度地提高其WUE,NY5的WUE增幅远大于NY2.镉胁迫下NY5的新完全展开叶Cd含量的积累明显高于NY2;而EBL2处理下可降低NY2的新完全展开叶Cd含量,但EBL3却显著增加NY5的叶片Cd含量.镉胁迫下,喷施EBL2的NY2的不同器官、NY5根的Cd含量均显著下降,而NY5其他器官的Cd含量变化不显著.NY5不同器官的Cd含量均明显高于NY2.上述表明,24-EBL可明显提高菊芋的耐镉水平,主要是因为外源喷施24-EBL能显著促进其光合和提高水分利用效率,从而改善Cd胁迫下菊芋幼苗的生长;而24-EBL对菊芋NY5非气孔限制的更显著改善是其促进其光合、水分利用的重要原因,也是其对NY5的生长调控效果优于NY2的重要原因之一.结果还显示,菊芋NY5植株生物量大,从环境中提取Cd的能力较好,因此可作为重金属污染土壤的植物修复的材料来利用.  相似文献   

10.
燕江伟  李昌晓  崔振  刘媛 《生态学报》2017,37(21):7242-7250
为探究干旱条件下,互叶醉鱼草(Buddleja alternifolia Maxim.)幼苗对重金属镉胁迫的生长及光合生理响应机制,以两年生互叶醉鱼草幼苗为试验材料,设置对照与干旱两个水分处理组(土壤相对含水率分别为:65%—60%,35%—30%),每个水分处理条件下再分别设置3个镉处理浓度(0.28、(0.6+0.28)、(1.2+0.28)mg/kg),共6个处理。测定不同水分及镉处理对互叶醉鱼草生长、生物量、光合参数及体内重金属含量的影响。结果表明:干旱与镉复合胁迫下植物的存活率为100%。镉胁迫、干旱与镉复合胁迫均不同程度抑制了互叶醉鱼草幼苗生长、生物量积累、植株的光合作用及叶绿素含量,且其光合和叶绿素含量的降幅明显大于单一镉胁迫。镉胁迫下,互叶醉鱼草幼苗单株最高镉富集量为69.33 mg/kg,而复合胁迫下单株最高镉富集量为50.68 mg/kg。以上结果表明:干旱胁迫能够加重镉胁迫对植物的影响,使复合胁迫下互叶醉鱼草生长、光合生理及镉富集能力下降。但单一镉胁迫下,互叶醉鱼草对镉具有更强的耐受性,并有较高的生物富集能力,且干旱与Cd复合胁迫下互叶醉鱼草幼苗仍有一定的镉积累量。因此在干旱半干旱区园林绿化以及Cd污染地区的生态建设中,互叶醉鱼草是一种具有巨大应用潜力和前景的灌木树种。  相似文献   

11.
Cadmium (Cd) is a nonessential heavy metal that can be harmful at low concentrations in organisms. Therefore, it is necessary to decrease Cd accumulation in the grains of wheats aimed for human consumption. In response to Cd, higher plants synthesize sulphur-rich peptides, phytochelatins (PCs). PC–heavy metal complexes have been reported to accumulate in the vacuole. Retention of Cd in the root cell vacuoles might influence the symplastic radial Cd transport to the xylem and further transport to the shoot, resulting in genotypic differences in grain Cd accumulation. We have studied PC accumulation in 12-day-old seedlings of two cultivars of spring bread wheat (Triticum aestivum), and two spring durum wheat cultivars (Triticum turgidum var. durum) with different degrees of Cd accumulation in the grains. Shoots and roots were analysed for dry weight, Cd and PC accumulation. There were no significant differences between the species or the varieties in the growth response to Cd, nor in the distributions of PC chain lengths or PC isoforms. At 1 μM external Cd, durum wheat had a higher total Cd uptake than bread wheat, however, the shoot-to-root Cd concentration ratio was higher in bread wheat. When comparing varieties within a species, the high grain Cd accumulators exhibited lower rates of root Cd accumulation, shoot Cd accumulation, and root PC accumulation, but higher shoot-to-root Cd concentration ratios. Intraspecific variation in grain Cd accumulation is apparently not only explained by differential Cd accumulation as such, but rather by a differential plant-internal Cd allocation pattern. However, the higher average grain Cd accumulation in the durum wheats, as compared to the bread wheats, is associated with a higher total Cd accumulation in the plant, rather than with differential plant-internal Cd allocation. The root-internal PC chain length distributions and PC–thiol-to-Cd molar ratios did not significantly differ between species or varieties, suggesting that differential grain Cd accumulation is not due to differential PC-based Cd sequestration in the roots.  相似文献   

12.
The addition of NaCl to cadmium had significant synergistic effect on the wheat root and shoot fresh mass, relative growth rate and net assimilation rate, while showed no significant effects on the dry mass production, leaf area, leaf area ratio, leaf mass ratio and specific leaf area. Additive depression of the rate of photosynthesis and the stomatal conductance was recorded, while no significant effect on the transpiration rate was observed. The Cd stress disturbed the mineral nutrition of the wheat plants either directly or indirectly, NaCl markedly reduce the uptake and internal concentration of K and Ca in the shoot. The combination of cadmium and NaCl showed no additive effects on the content of ions in the root as well as in the shoot of wheat plants.  相似文献   

13.
Salicylic acid (SA) is a potent signaling molecule in plants and is involved in eliciting specific responses to biotic and abiotic stresses. The aim of this study is to investigate whether the exogenous application of SA can improve cadmium (Cd) induced inhibition of photosynthesis in castor bean (Ricinus communis L.) plants. The effects of SA and Cd on plant growth, spectral reflectance, pigment contents, chlorophyll fluorescence and gas exchange were examined in a hydroponic cultivation system. Results indicate that Cd exposure significantly decreased the dry biomass, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), pigment contents, quantum yield of PS II photochemistry (Fv/Fm), and effective quantum yield of PS II (??PS II) in the plants. Pretreatment with SA alone reduced the biomass and Pn in castor bean plants, whereas pigment contents, Fv/Fm and ??PS II remained unaffected. Reduced Gs, Ci and E, as well as increased stomatal limitation (Ls) and water use efficiency (WUE), were observed in plants pretreated with 500???M SA alone, whereas plants treated with 250???M SA were unaffected. Under Cd stress, SA pretreatment led to a significant decrease in Pn, Gs, E, Ci, and chlorophyll contents (Chl a, Chl b, Chl a+b, Car, Chl a/b), and an increase in Ls and WUE. Cd exposure enhanced spectral reflectance in the range 550?C680?nm and 750?C1,050?nm. It also decreased the normalized difference vegetation index (chlNDI), the modified red edge simple ratio index (mSR705), the red edge position (REP), water band index, and red/green ratio, whereas the structure independent pigment index (SIPI) was increased. Significant correlations (P?<?0.01) between spectral indices (mSR705, chlNDI, REP, red/green ratio) and pigment contents. SA significantly worsened plant growth and photosynthesis in Cd-stressed castor bean plants, in which a stomatal limitation was involved. The leaf spectral reflectance is a sensitive indicator in determining Cd toxicity in plants.  相似文献   

14.
Regulation of photosynthesis in nitrogen deficient wheat seedlings   总被引:5,自引:1,他引:4       下载免费PDF全文
Nitrogen effects on the regulation of photosynthesis in wheat (Triticum aestivum L., cv Remia) seedlings were examined. Ribulose 1,5-bisphosphate carboxylase/oxygenase was rapidly extracted and tested for initial activity and for activity after incubation in presence of CO2 and Mg2+. Freeze clamped leaf segments were extracted for determinations of foliar steady state levels of ribulose 1,5-bisphosphate, triose phosphate, 3-phosphoglycerate, ATP, and ADP. Nitrogen deficient leaves showed increased ATP/ADP and triose phosphate/3-phosphoglycerate ratios suggesting increased assimilatory power. Ribulose 1,5-bisphosphate levels were decreased due to reduced pentose phosphate reductive cycle activity. Nevertheless, photosynthesis appeared to be limited by ribulose 1,5-bisphosphate carboxylase/oxygenase, independent of nitrogen nutrition. Its degree of activation was increased in nitrogen deficient plants and provided for maximum photosynthesis at decreased enzyme protein levels. It is suggested that ribulose 1,5-bisphosphate carboxylase/oxygenase activity is regulated according to the amount of assimilatory power.  相似文献   

15.
This study compared the effects of salt (NaCl) stress on growth, photosynthesis and solute accumulation in seedlings of the three poplar (Populus bonatii) cultivars Populus × BaiLin-2 (BL-2), Populus × BaiLin-3 (BL-3), and Populus × Xjiajiali (XJJL). The results showed that BL-2 and BL-3 could not survive at a salinity level of 200 mM but XJJL grew well. The effect of moderate salt stress on leaf extension of the three cultivars was only slight. At a high level of salinity, however, NaCl clearly inhibited leaf extension of BL-2 and BL-3, whereas it did not affect that of XJJL, and the net photosynthetic rate (P N) in XJJL was much higher than those of BL-2 and BL-3. The lower P N of BL-2 and BL-3 might be associated with the high concentration of Na+ and/or Cl accumulated in the leaves, which could be toxic in photosynthesis system. In summary, the greater salt-tolerance of XJJL compared with that of BL-2 and BL-3 might be explained by the higher P N and photosynthetic area, the lower Na+/K ratio and Cl in the leaf, and the greater accumulation of soluble sugars and SO4 2−.  相似文献   

16.
Abscisic acid accumulation and cadmium tolerance in rice seedlings   总被引:8,自引:0,他引:8  
Rice ( Oryza sativa L.) seeds were soaked for 18 h in distilled water in the absence (–PBZ) or presence (+PBZ, a triazole) of 100 mg l−1 paclobutrazol and then air dried. These air-dried seeds were germinated in the dark and then cultivated in a Phytotron. Twelve-day-old –PBZ and +PBZ seedlings were treated or not with CdCl2. Cd toxicity was judged by the decrease in biomass production, decrease in chlorophyll and protein content, increase in NH4+ content and induction of oxidative stress. The results indicated that PBZ applied to seeds was able to protect rice seedlings from Cd toxicity. On treatment with CdCl2, the abscisic acid (ABA) content increased in +PBZ leaves, but not in –PBZ leaves. The decrease in the transpiration rate of –PBZ seedlings by CdCl2 was less than that of +PBZ seedlings. Exogenous application of the ABA biosynthesis inhibitor, fluridone (Flu), reduced ABA accumulation, increased the transpiration rate and Cd content, and decreased the Cd tolerance of +PBZ seedlings. The effects of Flu on the Cd toxicity, transpiration rate and Cd content were reversed by the application of ABA. It seems that the PBZ-induced Cd tolerance of rice seedlings is mediated through an accumulation of ABA.  相似文献   

17.
Sugar, a final product of photosynthesis, is reported to be involved in the defense mechanisms of plants against abiotic stresses such as salinity, water deficiency, extreme temperature and mineral toxicity. Elements involved in photosynthesis, sugar content, water oxidation, net photosynthetic rate, activity of enzyme and gene expression have therefore been studied in Homjan (HJ), salt-tolerant, and Pathumthani 1 (PT1), salt-sensitive, varieties of rice. Fructose-1,6-biphosphatase (FBP) and fructokinase (FK) genes were rapidly expressed in HJ rice when exposed to salt stress for 1–6 h and to a greater degree than in PT1 rice. An increase in FBP enzyme activity was found in both roots and leaves of the salt-tolerant variety after exposure to salt stress. A high level of sugar and a delay in chlorophyll degradation were found in salt-tolerant rice. The total sugar content in leaf and root tissues of salt-tolerant rice was 2.47 and 2.85 times higher, respectively, than in the salt-sensitive variety. Meanwhile, less chlorophyll degradation was detected. Salt stress may promote sugar accumulation, thus preventing the degradation of chlorophyll. Water oxidation by the light reaction of photosynthesis in the salt-tolerant variety was greater than that in the salt-sensitive variety, indicated by a high maximum quantum yield of PSII (F v/F m) and quantum efficiency of PSII (ΦPSII) with low nonphotochemical quenching (NPQ), leading to a high net photosynthetic rate. In addition, the overall growth performances in the salt-tolerant variety were higher than those in the salt-sensitive variety. The FBP gene expression and enzyme activity, sugar accumulation, pigment stabilization, water oxidation and net photosynthetic rate parameters in HJ rice should be further investigated as multivariate salt-tolerant indices for the classification of salt tolerance in rice breeding programs.  相似文献   

18.
镉胁迫下春小麦中镉的分布、富集及转移规律   总被引:4,自引:0,他引:4  
采用盆栽试验,研究了镉胁迫下重金属镉(Cd)在春小麦中的分布、富集及转移规律。结果表明:Cd胁迫下,小麦根、茎、叶和籽粒中Cd积累量随外源Cd的增加而增加,小麦不同部位Cd积累量为根叶茎籽粒;籽粒中Cd含量与土壤中Cd显著相关;小麦不同部位对Cd的富集能力差异显著,且随外源Cd处理浓度的增加,各部位富集系数逐渐降低,低Cd浓度时各部位更易富集Cd;小麦植株地上部的转移系数亦呈递减趋势为茎、叶籽粒;在春小麦全生育期,土壤中Cd含量无明显变化,根对外源Cd的富集吸收于生育期70d左右达峰值,小麦植株中的Cd也在80d左右达到峰值后逐步减少,表明植株中的Cd,随籽粒的成熟逐步转移至籽粒。  相似文献   

19.
镉胁迫下活性炭对小麦幼根的保护作用   总被引:7,自引:0,他引:7  
对镉处理下活性炭对小麦幼根的保护作用进行了研究。在小麦幼根的水培环境中加入镉导致了小麦幼根根长的降低、干重及鲜重的下降、细胞死亡水平上升和可溶性蛋白含量的增加。将小麦幼根置于加入活性炭的水培环境中并未对小麦幼根的根长、干重、鲜重、细胞死亡水平和可溶性蛋白的含量造成不良的影响,且在一定程度上促进了根的生长并降低了细胞的死亡水平。而在镉处理下加入活性炭则明显减缓了小麦幼根的根长的降低、干重及鲜重的下降、细胞死亡水平上升和可溶性蛋白含量的增加。上述观察表明,活性炭的加入对于镉和氯苯胁迫下小麦幼根具有一定的保护作用。  相似文献   

20.
An experiment was conducted to find out the effect of short-term heat stress on morpho-physiological characters and antioxidants in 10 diverse wheat genotypes. Seed were aseptically grown in test tubes containing filter paper whose lower half was dipped in one-fourth MS media. Heat stress conditions were created by exposing the seedlings at 45 °C for 2 h after 7 days of their germination. Measurements were taken after 3 days of treatment. Heat stress significantly reduced the shoot dry mass, root dry mass, shoot length and root length in all the genotypes. The chlorophyll content and membrane stability index decreased, whereas proline content increased in heat-treated plants. There was significant increase in the activity of catalase, guaiacol peroxidase and superoxide dismutase under stress conditions. The genotypic variations were also significant. On the basis of a coordinated simulation of all these parameters, wheat genotypes Raj 4037 and PBW 373 were identified as tolerant to high temperature stress. The study provides evidence that the tolerant genotypes were equipped with better management of physiological processes along with an efficient antioxidative defence system, sensitivity of which can be evaluated to a sufficient level of certainty at seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号