首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development.  相似文献   

2.
Abstract.— Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) has been demonstrated in both mytilid and unionid bivalves. Under DUI, females pass on their mtDNA to both sons and daughters, whereas males pass on their mtDNA to only sons. In mytilids, the loss of an original male (or M) mitotype, with its subsequent replacement by that lineage's female (or F) mitotype, has been called a role-reversal or, more specifically, a masculinization event. Multiple masculinization events have been inferred during the evolutionary history of mytilids but not unionids. The perceived lack of role-reversal events in unionids may represent a significant difference in the evolutionary dynamics of DUI between the two bivalve taxa or simply a lack of sufficient taxon sampling in unionids. To evaluate these alternative hypotheses, six additional unionoidean bivalve genera were sampled for DUI including one genus from the sister taxon of the Unionidae, the Hyriidae. Phylogenetic analyses of 619 base pairs of cytochrome c oxidase I (COI) from eight genera (nine species) of unionoidean bivalves, plus the sister taxon to the Unionoida, Neotrigonia , revealed that the M and F unionoidean mitotypes were contained in gender-specific, topologically congruent clades. This supports the hypothesis that either role-reversal events do not occur in unionoideans or, if they do occur, their products are ephemeral in an evolutionary sense. Furthermore, the fact that the mantle-tissue-derived Neotrigonia mitotype is the sister mitotype to the unionoidean F mitotype clade suggests that DUI has been operating with high fidelity in unionoids for at least 200 million years. A relatively low incidence of interspecific hybridization in unionoideans and a possibly obligate role for the M mitotype in unionoidean gender determination are offered as potential explanations for the disparate evolutionary dynamics of DUI observed between mytilid and unionoidean bivalves.  相似文献   

3.
Mitochondrial DNA is transmitted maternally in metazoan species. This rule does not hold in several species of bivalves that have two mtDNA types, one that is transmitted maternally and the other paternally. This system of mitochondrial DNA transmission is known as doubly uniparental inheritance (DUI). Here we present evidence of DUI in the clam Donax trunculus making Donacidae the sixth bivalve family in which the phenomenon has been found. In addition, we present the taxonomic affiliation of all species in which DUI is currently known to occur and construct a phylogeny of the maternal and paternal genomes of these species. We use this information to address the question of a single or multiple origins of DUI and to discuss whether failed attempts to demonstrate the presence of DUI in several bivalve species might be due to problems of detection or to genuine absence of the phenomenon.  相似文献   

4.
5.
Although mitochondrial inheritance in metazoans is typically strictly maternal, doubly uniparental inheritance (DUI) is probably the major exception to this widespread rule. DUI has been found in many species of bivalve molluscs, belonging to several different families. Based on current understanding, the detection of DUI generally relies on the detection of two distinct mitochondrial DNA lineages: a female‐transmitted one, that dominates somatic tissues in males and females and eggs, and a male‐transmitted one, that dominates the male germline and sperm. When a new species with DUI is identified, novel data are available to make a better inference on the evolution of this phenomenon within the Bivalvia. In this study, mitochondrial heteroplasmy in Pseudocardium sachalinense (Schrenck, 1862) is described. This species belongs to the family of Mactridae, in which DUI has not been previously demonstrated: this finding allowed to upgrade the present knowledge about the distribution of DUI.  相似文献   

6.
Doubly uniparental inheritance (DUI) is a particular mitochondrial DNA inheritance mode reported in a number of bivalves. DUI species show two types of mtDNA, one transmitted from females to daughters and sons (F mitotype) and another one from males to sons (M mitotype). In Veneridae, the existence of DUI has been investigated in several species but it was found in only two of them. In this study, we obtained partial sequences of rrnL, cytb and cox1 genes of males and females of Polititapes rhomboides from NW Spain and we demonstrated the existence of heteroplasmy in males, as expected under DUI. F and M mitotypes showed a taxon-specific phylogenetic pattern and similar evolutionary rates. We focused on cox1 for population genetic analysis, examining separately F and M mitotypes, but also F mitotypes from females (F) and males (F). In all cases, cox1 bears signs of strong purifying selection, with no apparent evidence of relaxed selection in the M genome, while the divergence between F and M genomes is in agreement with the neutral model of evolution. The cox1 polymorphism, higher at the M than at the F genome, also shows clear footprints of genetic hitchhiking with favourable mutations at other mtDNA loci, except for F. In terms of population structure, results suggest that the pattern depends on the examined mitotype (F, F♀, F or M).  相似文献   

7.
Several species from a number of bivalve molluscan families are known to have a paternally transmitted mitochondrial genome, along with the standard maternally transmitted one. The main characteristic of the phenomenon, known as doubly uniparental inheritance (DUI), is the coupling of sex and mtDNA inheritance: males receive both genomes but transmit only the paternal to their progeny; females either do not have the paternal genome or, if they do, they do not transmit it to their progeny. In the families Mytilidae and Veneridae, both of which have DUI, a female individual is either female‐biased (it produces only, or nearly so, female progeny), male‐biased (it produces mainly male progeny) or non‐biased (it produces both genders in intermediate frequencies). Here we present evidence for a same pattern in the freshwater mussel, Unio delphinus (Unionidae). These results suggest that the maternal control of whether a fertilized egg will develop into a male or a female individual (and the associated feature of whether it will inherited or not inherit the paternal mtDNA) is a general characteristic of species with DUI.  相似文献   

8.
The extant anomalodesmatan bivalves have always proved rather enigmatic and difficult to interpret, both in terms of their relationships to other bivalve taxa and the interrelationships of the constituent families. These difficulties stem from their diverse and often highly specialized life habits which have resulted in a wide array of disparate morphologies, and also from the fact that many are extremely rare. Classifications based on morphological characters have been dogged by fears that convergent and parallel evolution has masked phylogenetic signals. Molecular surveys of members of 12 of the 15 constituent families, using the 18S rRNA gene, have revealed that anomalodesmatans are robustly monophyletic and lie within the basal heterodonts. The Anomalodesmata should no longer be regarded as a subclass, but as a part of the Heterodonta. Here we present an enhanced analysis of 32 anomalodesmatan species (representatives of 12 families). Our results, subjected to Maximum Parsimony, Maximum Likelihood and Bayesian analyses, challenge our understanding of the internal relationships within the Anomalodesmata. In particular they indicate the need for a re-distribution of the families traditionally placed in the Thracioidea and Pandoroidea into a 'thraciid' lineage (Thraciidae + Cleidothaeridae + Myochamidae) and a 'lyonsiid' lineage (polyphyletic Lyonsiidae + Clavagellidae + Laternulidae + Pandoridae). The endolithic Clavagella and endobenthic Brechites and Penicillus form a robust clade. The hypothesis that the carnivorous septibranchs are monophyletic can, thus far, be neither supported nor rejected. Mapping critical morphological characters onto our molecular results provides evidence of multiple loss of some characters (e.g. prismato-nacreous shell microstructure and shell spicules) and also multiple gain of others (e.g. chondrophores).  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 148 , 395–420.  相似文献   

9.
This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish unambiguously between the three species in the genus Perna. Target regions were portions of two mitochondrial genes, cox1 and nad4, and the intergenic spacer between these that occurs in at least two Perna species. Based on interspecific sequence comparisons of the nad4 gene, a conserved primer has been designed that can act as a forward primer in PCRs for any Perna species. Four reverse primers have also been designed, based on nad4 and intergenic spacer sequences, which yield species-specific products of different lengths when paired with the conserved forward primer. A further pair of primers has been designed that will amplify part of the cox1 gene of any Perna species, and possibly other molluscs, as a positive control to demonstrate that the PCR is working.  相似文献   

10.
This study presents evidence, using sequences of ribosomal 16S and COI mtDNA, for the presence of two mitochondrial genomes in Perumytilus purpuratus. This may be considered evidence of doubly uniparental mtDNA inheritance. The presence of the two types of mitochondrial genomes differentiates females from males. The F genome was found in the somatic and gonadal tissues of females and in the somatic tissues of males; the M genome was found in the gonads and mantle of males only. For the mitochondrial 16S region, ten haplotypes were found for the F genome (nucleotide diversity 0.004), and 7 haplotypes for the M genome (nucleotide diversity 0.001), with a distance Dxy of 0.125 and divergence Kxy of 60.33%. For the COI gene 17 haplotypes were found for the F genome (nucleotide diversity 0.009), and 10 haplotypes for the M genome (nucleotide diversity 0.010), with a genetic distance Dxy of 0.184 and divergence Kxy of 99.97%. Our results report the presence of two well-differentiated, sex-specific types of mitochondrial genome (one present in the male gonad, the other in the female gonad), implying the presence of DUI in P. purpuratus. These results indicate that care must be taken in phylogenetic comparisons using mtDNA sequences of P. purpuratus without considering the sex of the individuals.  相似文献   

11.
The New Zealand freshwater mussels are taxonomically revised and compared with key Australian and South American taxa using DNA sequence data. Three living species are recognised: Echyridella menziesii, Echyridella aucklandica and Echyridella onekaka. Cucumerunio websteri websteri and Cucumerunio websteri delli, are treated as junior synonyms of Unio aucklandica, which is transferred from Cucumerunio (and Hyridella) to Echyridella. Lectotypes are designated for Unio waikarensis and Unio hochstetteri, which are illustrated together with primary type specimens of other relevant taxa. The type locality of U. aucklandica is restricted to the catchment of the Kawakawa River.  相似文献   

12.
Abstract. The external epithelial cilia and other surface structures of the nuculoid protobranchs Nuculana pernula and Nucula nitidosa were studied. The gill lamellae and labial palps are partly covered with very long cilia. These have a modified slender distal portion, an ordinary metazoan-type basal body, a basal foot. and a single, long cross-striated rootlet. In cilia on the gills of N. nitidosa , the basal foot is thick and attaches to the next basal body directly behind. Unciliated surface areas on the gills, labial palps, and foot are covered with a dense brushborder of microvilli. We observed no specific homologies between the cilia of the protobranchs studied and the epidermal cilia of the enigmatic Xenoturbella bocki , hence the recent hypothesis of a close connection of the latter to the protobranch bivalves is questioned.  相似文献   

13.
Pieter W.  Kat 《Journal of Zoology》1983,201(3):395-416
Simultaneous hermaphroditism is an infrequent mode of reproduction among bivalves of the family Unionidae: only five of the 220 North American species are simultaneous hermaphrodites. However, hermaphroditic individuals of otherwise predominantly dioecious species have been encountered in 30 of I01 species examined. These hermaphroditic individuals as well as simultaneous hermaphrodites can exhibit considerable variability in the ratio of spermatogenic: oogenic tissue within the gonad, and the purposes of this paper are to determine the underlying causes of both this variability and the occurrence of occasional hermaphroditic individuals among dioecious species. Results indicate that the ratio of male: female gonodal tissue of a simultaneous hermaphrodite is bimodally distributed, and several hypotheses to account for this observation are presented. It is proposed that populations occurring in different habitats and under conditions of different individual density are subject to fundamentally different sexual selection pressures acting on ratios of allocation to male and female gametes. Occasional hermaphroditism among otherwise predominantly dioecious species was in this study associated with infection of the gonads by digenean trematodes. A model of sexual determination among unionids presented in this paper proposes that sex is determined by genetically controlled hormone levels: occasional hermaphrodites result from alterations in these hormone levels caused by developmental errors and trematodal infections which mimic the results of such errors. Predictions of this model are consistent with observed levels of variability in male: females gonadal tissue among occasional hermaphrodites.  相似文献   

14.
Phylogenetic relationships within Pectinidae (Bivalvia, Pteriomorphia) have been investigated primarily for Pacific and Western Atlantic or commercially valuable taxa. Most molecular phylogenetic studies have revealed monophyly of pectinid bivalves but interrelationships of the different clades are still inconsistent. However, non-commercial European Pectinidae has mostly been neglected in earlier investigations and therefore the evolution and radiation of the European Pectinidae is poorly understood. Since the fossil record of this group is well investigated, the evolutionary age of phylogenetic diversification and radiation events within this group can be dated. Thus, the connection of geological and climatic changes to radiation events within this group can be assessed. We investigated the phylogenetic relationships within European Pectinidae using mitochondrial (12S and 16S) and nuclear (18S, 28S and H3) gene markers and performed relaxed molecular clock approaches to gain information on the evolutionary age and the connection between Cenozoic climatic changes and diversification within this group. The results show concordance of radiation events with the Middle Miocene cooling event and the following climatic period with slowly decreasing temperatures. However, geological changes such as the uplift of the Gomphotherium Landbridge or the closure and re-opening of the Strait of Gibraltar also had great impact on diversification and distribution patterns within European Pectinidae.  相似文献   

15.
Abstract

The phylogenetic history, paleontological implications, and ecology of larger New Zealand Recent species of Neilo (sensu stricto) are discussed. N. wairoana delli, N. blacki, and N. (Pseudomalletia) aoteana are described as new. The following taxa are reduced to chronosubspecies: N. jugifera Marwick - of N. australis (Quoy & Gaimard); N. annectens Powell and N. rugata Dell - of N. sublaevis Marwick; N. sinangula Finlay - of N. awamoana Finlay.  相似文献   

16.
Food selection by Dreissena polymorpha Pallas (Mollusca: Bivalvia)   总被引:1,自引:1,他引:0  
SUMMARY. The role of the selection systems in the mantle cavity and the stomach of Dreissena polymorpha was investigated by comparing the composition of particles in the plankton, the stomach and the mid-gut. Both systems selected particles of 15–40 μm for food. The selection mechanism functioned more efficiently in the presence of simple algal mixtures than in the presence of lake plankton, but did not function at all in animals fed after 16 h starvation. The composition of successive pseudo-faecal pellets differed. It is concluded that selection of different kinds of particle occurs in specific places in the mantle cavity. Cryptomonas spp. were highly preferred as food. Indications were found that not only does size-selection occur, but also selection of a chemical nature.  相似文献   

17.
The doubly uniparental inheritance (DUI) of some bivalve mollusks is the major exception to the common maternal inheritance of mitochondria in animals. DUI involves two mitochondrial lineages with paternal and maternal transmission routes, and it appears as a complex phenomenon requiring both nuclear and mitochondrial adaptations. DUI distribution seems to be scattered among the Bivalvia, and there are several clues for its multiple origins. In this paper, we investigate whether the incipient DUI systems had left possible selective signatures on mitochondrial genomes. Alongside the outstanding divergence of amino acid sequences, we confirmed strong purifying selection to act on mitochondrial genes. However, we found evidence that distinct episodes of intense directional pressure are associated with the origins of different DUI systems: We interpret these signals as footprints of the coevolution with the nuclear genome that ought to take place at the base of a DUI clade. Six genes (atp6, cox1, cox2, cox3, nad4L, and nad6) seem to be more commonly linked to the appearance of DUI. We also identified few putative DUI‐specific mutations, thus extending support to the hypothesis of multiple independent origins of this complex phenomenon.  相似文献   

18.
Blue mussels of the genus Mytilus have an unusual mode of mitochondrial DNA inheritance termed doubly uniparental inheritance (DUI). Females are homoplasmic for the F mitotype which is inherited maternally, whereas males are heteroplasmic for this and the paternally inherited M mitotype. In areas where species distributions overlap a varying degree of hybridization occurs; yet genetic differences between allopatric populations are maintained. Observations from natural populations and previous laboratory experiments suggest that DUI may be disrupted by hybridization, giving rise to heteroplasmic females and homoplasmic males. We carried out controlled laboratory crosses between Mytilus edulis and M. galloprovincialis to produce pure species and hybrid larvae of known parentage. DNA markers were used to follow the fate of the F and M mitotypes through larval development. Disruption of the mechanism which determines whether the M mitotype is retained or eliminated occurred in an estimated 38% of M. edulis x M. galloprovincialis hybrid larvae, a level double that previously observed in adult mussels from a natural M. edulis x M. galloprovincialis hybrid population. Furthermore, reciprocal hybrid crosses exhibited contrasting types of DUI disruption. The results indicate that disruption of DUI in hybrid mussels may be associated with increased mortality and hence could be a factor in the maintenance of genetic integrity for each species.  相似文献   

19.
The razor clam Solen marginatus has a diploid chromosome number of 38. The karyotype consists of one metacentric/submetacentric, three submetacentric/metacentric, five submetacentric, one submetacentric/subtelocentric, one subtelocentric/submetacentric, six subtelocentric and two telocentric chromosome pairs. Staining with chromomycin A3 revealed bright positive bands subcentromerically in the long arms of one medium-sized subtelocentric pair, while DAPI staining showed uniform fluorescence in all chromosomes of the complement. Fluorescence in situ hybridization using an 18S-5.8S-28S rDNA probe locates these loci at the subcentromeric region of one subtelocentric pair and at the subtelomeric region of another subtelocentric pair.  相似文献   

20.
The largest Recent family of Bivalvia, the marine Veneridae with approximately 800 species, comprises one of the least understood and most poorly defined molluscan taxa, despite including some of the most economically important and abundant bivalves, for example quahog, Pismo clams, and Manila clams. A review of previous phylogenetic analyses including the superfamily Veneroidea (Veneridae, Petricolidae, Glauconomidae, Turtoniidae, Neoleptonidae) and within the Veneridae shows minimal taxon sampling leading to weak conclusions and few supported synapomorphies. New phylogenetic analyses on 114 taxa tested the monophyly of Veneroidea, Veneridae, and 17 nominal venerid subfamilies, using morphological (conchological, anatomical) data and molecular sequences from mitochondrial (16S, cytochrome oxidase I) and nuclear (28S, histone 3) genes. Morphological analyses using 45 exemplar taxa and 23 traditional characters were highly homoplastic and failed to reconstruct traditional veneroid classification. Full morphological analyses (31 characters) supported the monophyly of Veneroidea and Veneridae but only when certain taxa were excluded, revealing analytical difficulties caused by a suite of characters associated with neotenous or miniaturized morphology. Molecular analyses resulted in substantially higher clade consistency. The combined molecular data set resulted in significant support for a particular topology. The monophyly of Veneridae was supported only when Petricolidae and Turtoniidae were subsumed, and recognized as members with derived or neotenous morphologies, respectively. Morphological character mapping on molecular trees retained a high level of homoplasy, but revealed synapomorphies for major branch points and supported six subfamily groups (Dosiniinae, Gemminae, Samarangiinae, Sunettinae, Tapetinae, combined Chioninae + Venerinae). Glauconomidae and Neoleptonidae are provisionally maintained in Veneroidea pending further study; Petricolinae and Turtoniinae are placed in Veneridae. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society, 2006, 148 , 439–521.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号