首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To classify proteins into functional families based on their primary sequences, popular algorithms such as the k-NN-, HMM-, and SVM-based algorithms are often used. For many of these algorithms to perform their tasks, protein sequences need to be properly aligned first. Since the alignment process can be error-prone, protein classification may not be performed very accurately. To improve classification accuracy, we propose an algorithm, called the Unaligned Protein SEquence Classifier (UPSEC), which can perform its tasks without sequence alignment. UPSEC makes use of a probabilistic measure to identify residues that are useful for classification in both positive and negative training samples, and can handle multi-class classification with a single classifier and a single pass through the training data. UPSEC has been tested with real protein data sets. Experimental results show that UPSEC can effectively classify unaligned protein sequences into their corresponding functional families, and the patterns it discovers during the training process can be biologically meaningful.  相似文献   

2.
The recent interest sparked due to the discovery of a variety of functions for non-coding RNA molecules has highlighted the need for suitable tools for the analysis and the comparison of RNA sequences. Many trans-acting non-coding RNA genes and cis-acting RNA regulatory elements present motifs, conserved both in structure and sequence, that can be hardly detected by primary sequence analysis alone. We present an algorithm that takes as input a set of unaligned RNA sequences expected to share a common motif, and outputs the regions that are most conserved throughout the sequences, according to a similarity measure that takes into account both the sequence of the regions and the secondary structure they can form according to base-pairing and thermodynamic rules. Only a single parameter is needed as input, which denotes the number of distinct hairpins the motif has to contain. No further constraints on the size, number and position of the single elements comprising the motif are required. The algorithm can be split into two parts: first, it extracts from each input sequence a set of candidate regions whose predicted optimal secondary structure contains the number of hairpins given as input. Then, the regions selected are compared with each other to find the groups of most similar ones, formed by a region taken from each sequence. To avoid exhaustive enumeration of the search space and to reduce the execution time, a greedy heuristic is introduced for this task. We present different experiments, which show that the algorithm is capable of characterizing and discovering known regulatory motifs in mRNA like the iron responsive element (IRE) and selenocysteine insertion sequence (SECIS) stem–loop structures. We also show how it can be applied to corrupted datasets in which a motif does not appear in all the input sequences, as well as to the discovery of more complex motifs in the non-coding RNA.  相似文献   

3.
Repseek, a tool to retrieve approximate repeats from large DNA sequences   总被引:2,自引:0,他引:2  
Chromosomes or other long DNA sequences contain many highly similar repeated sub-sequences. While there are efficient methods for detecting strict repeats or detecting already characterized repeats, there is no software available for detecting approximate repeats in large DNA sequences allowing for weighted substitutions and indels in a coherent statistical framework. Here, we present an implementation of a two-steps method (seed detection followed by their extension) that detects those approximate repeats. Our method is computationally efficient enough to handle large sequences and is flexible enough to account for influencing factors, such as sequence-composition biases both at the seed detection and alignment levels. AVAILABILITY: http://wwwabi.snv.jussieu.fr/public/RepSeek/  相似文献   

4.
We present an algorithm to identify potential functional elementslike protein binding sites in DNA sequences, solely from nucleotidesequence data. Prerequisites are a set of at least seven notclosely related sequences with a common biological functionwhich is correlated to one or more unknown sequence elementspresent in most but not necessarily all of the sequences. Thealgorithm is based on a search for n-tuples which occur at leastin a minimum percentage of the sequences with no or one mismatch,which may be at any position of the tuple. In contrast to functionaltuples, random tuples show no preferred pattern of mismatchlocations within the tuple nor is the conservation extendedbeyond the tuple. Both features of functional tuples are usedto eliminate random tuples. Selection is carried out by maximizationof the information content first for the n-tuple, then for aregion containing the tuple and finally for the complete bindingsite. Further matches are found in an additional selection step,using the ConsInd method previously described. The algorithmis capable of identifying and delimiting elements (e.g. proteinbinding sites) represented by single short cores (e.g. TATAbox) in sets of unaligned sequences of about 500 nucleotidesusing no information other than the nucleotide sequences. Furthermore, we show its ability to identify multiple elements in aset of complete LTR sequences (more than 600 nucleotides persequence).  相似文献   

5.
We describe an algorithm (IRSA) for identification of common regulatory signals in samples of unaligned DNA sequences. The algorithm was tested on randomly generated sequences of fixed length with implanted signal of length 15 with 4 mutations, and on natural upstream regions of bacterial genes regulated by PurR, ArgR and CRP. Then it was applied to upstream regions of orthologous genes from Escherichia coli and related genomes. Some new palindromic binding and direct repeats signals were identified. Finally we present a parallel version suitable for computers supporting the MPI protocol. This implementation is not strictly bounded by the number of available processors. The computation speed linearly depends on the number of processors.  相似文献   

6.
Han Si  Lee SG  Kim KH  Choi CJ  Kim YH  Hwang KS 《Bio Systems》2006,84(3):175-182
Most multiple gene sequence alignment methods rely on conventions regarding the score of a multiple alignment in pairwise fashion. Therefore, as the number of sequences increases, the runtime of sequencing expands exponentially. In order to solve the problem, this paper presents a multiple sequence alignment method using a linear-time suffix tree algorithm to cluster similar sequences at one time without pairwise alignment. After searching for common subsequences, cross-matching common subsequences were generated, and sometimes inexact matching was found. So, a procedure aimed at masking the inexact cross-matching pairs was suggested here. In addition, BLAST was combined with a clustering tool in order to annotate the clusters generated by suffix tree clustering. The proposed method for clustering and annotating genes consists of the following steps: (1) construction of a suffix tree; (2) searching and overlapping common subsequences; (3) grouping subsequence pairs; (4) masking cross-matching pairs; (5) clustering gene sequences; (6) annotating gene clusters by the BLAST search. The performance of the proposed system, CLAGen, was successfully evaluated with 42 gene sequences in a TCA cycle (a citrate cycle) of bacteria. The system generated 11 clusters and found the longest subsequences of each cluster, which are biologically significant.  相似文献   

7.
8.
MOTIVATION: To predict the consensus secondary structure, possibly including pseudoknots, of a set of RNA unaligned sequences. RESULTS: We have designed a method based on a new representation of any RNA secondary structure as a set of structural relationships between the helices of the structure. We refer to this representation as a structural pattern. In a first step, we use thermodynamic parameters to select, for each sequence, the best secondary structures according to energy minimization and we represent each of them using its corresponding structural pattern. In a second step, we search for the repeated structural patterns, i.e. the largest structural patterns that occur in at least one sequence, i.e. included in at least one of the structural patterns associated to each sequence. Thanks to an efficient encoding of structural patterns, this search comes down to identifying the largest repeated word suffixes in a dictionary. In a third step, we compute the plausibility of each repeated structural pattern by checking if it occurs more frequently in the studied sequences than in random RNA sequences. We then suppose that the consensus secondary structure corresponds to the repeated structural pattern that displays the highest plausibility. We present several experiments concerning tRNA, fragments of 16S rRNA and 10Sa RNA (including pseudoknots); in each of them, we found the putative consensus secondary structure.  相似文献   

9.
We have developed a method for identifying consensus patternsin a set of unaligned DNA sequences known to bind a common proteinor to have some other common biochemical function. The methodis based on a tnatrix representation of binding site patterns.Each row of the matrix represents one of the four possible bases,each column represents one of the positions of the binding siteand each element is determined by the frequency the indicatedbase occurs at the indicated position. The goal of the methodis to find the most significant matrix-i.e. the one with thelowest probability of occurring by chance-out of all the matricesthat can be formed from the set of related sequences. The reliabilityof the method improves with the number of sequences, while thetime required increases only linearly with the number of sequences.To test this method, we analysed 11 DNA sequences containingpromoters regulated by the Escherichia coli LexA protein. Thematrices we' found were consistent with the known consensussequence, and could distinguish the generally accepted LexAbinding sites from other DNA sequences. Received on November 6, 1989; accepted on December 20, 1989  相似文献   

10.
The insertion-deletion model developed by Thorne, Kishino and Felsenstein (1991, J. Mol. Evol., 33, 114–124; the TKF91 model) provides a statistical framework of two sequences. The statistical alignment of a set of sequences related by a star tree is a generalization of this model. The known algorithm computes the probability of a set of such sequences in O(l 2k ) time, where l is the geometric mean of the sequence lengths and k is the number of sequences. An improved algorithm is presented whose running time is only O(22k l k).  相似文献   

11.
Statistical methodology for the identification and characterization of protein binding sites in a set of unaligned DNA fragments is presented. Each sequence must contain at least one common site. No alignment of the sites is required. Instead, the uncertainty in the location of the sites is handled by employing the missing information principle to develop an "expectation maximization" (EM) algorithm. This approach allows for the simultaneous identification of the sites and characterization of the binding motifs. The reliability of the algorithm increases with the number of fragments, but the computations increase only linearly. The method is illustrated with an example, using known cyclic adenosine monophosphate receptor protein (CRP) binding sites. The final motif is utilized in a search for undiscovered CRP binding sites.  相似文献   

12.
Here, we propose BpMatch: an algorithm that, working on a suitably modified suffix-tree data structure, is able to compute, in a fast and efficient way, the coverage of a source sequence S on a target sequence T, by taking into account direct and reverse segments, eventually overlapped. Using BpMatch, the operator should define a priori, the minimum length l of a segment and the minimum number of occurrences minRep, so that only segments longer than l and having a number of occurrences greater than minRep are considered to be significant. BpMatch outputs the significant segments found and the computed segment-based distance. On the worst case, assuming the alphabet dimension d is a constant, the time required by BpMatch to calculate the coverage is O(l2n). On the average, by setting l ≥ 2 log(d)(n), the time required to calculate the coverage is only O(n). BpMatch, thanks to the minRep parameter, can also be used to perform a self-covering: to cover a sequence using segments coming from itself, by avoiding the trivial solution of having a single segment coincident with the whole sequence. The result of the self-covering approach is a spectral representation of the repeats contained in the sequence. BpMatch is freely available on: www.sourceforge.net/projects/bpmatch.  相似文献   

13.
An approximate nested tandem repeat (NTR) in a string T is a complex repetitive structure consisting of many approximate copies of two substrings x and X ("motifs") interspersed with one another. NTRs fall into a class of repetitive structures broadly known as subrepeats. NTRs have been found in real DNA sequences and are expected to be important in evolutionary biology, both in understanding evolution of the ribosomal DNA (where NTRs can occur), and as a potential marker in population genetic and phylogenetic studies. This article describes an alignment algorithm for the verification phase of the software tool NTRFinder developed for database searches for NTRs. When the search algorithm has located a subsequence containing a possible NTR, with motifs X and x, a verification step aligns this subsequence against an exact NTR built from the templates X and x, to determine whether the subsequence contains an approximate NTR and its extent. This article describes an algorithm to solve this alignment problem in O(|T|(|X| + |x|)) space and time. The algorithm is based on Fischetti et al.'s wrap-around dynamic programming.  相似文献   

14.
Summary : An interactive dotmatrix program for the MacOS was designed that allows comparison of DNA to protein sequences using nested 3-frame translations. Availability : Shareware, available at http://copan.bioz.unibas.ch/software/ Contact : burglin@ubaclu. unibas.ch   相似文献   

15.
trees sifter 1.0 implements an approximate method to estimate the time to the most recent common ancestor (TMRCA) of a set of DNA sequences, using population evolution modelling. In essence, the program simulates genealogies with a user‐defined model of coalescence of lineages, and then compares each simulated genealogy to the genealogy inferred from the real data, through two summary statistics: (i) the number of mutations on the genealogy (Mn), and (ii) the number of different sequence types (alleles) observed (Kn). The simulated genealogies are then submitted to a rejection algorithm that keeps only those that are the most likely to have generated the observed sequence data. At the end of the process, the accepted genealogies can be used to estimate the posterior probability distribution of the TMRCA.  相似文献   

16.
Efficient massive mapping algorithm (EMMA),an algorithm on efficiently mapping massivecDNAs onto genomic sequences,has recently been developed.The process of mapping massive cDNAsonto genomic sequences has been improved using more approximate mapping filtering based on an enhancedsuffix array coupled with a pruned fast hash table,algorithms of block alignment extensions,and k-longestpaths.When compared with the classical BLAT software in this field,the computing of EMMA ranges fromtwo to forty-one times faster under similar prediction precisions.  相似文献   

17.
Important desired properties of an algorithm to construct a supertree (species tree) by reconciling input trees are its low complexity and applicability to large biological data. In its common statement the problem is proved to be NP-hard, i.e. to have an exponential complexity in practice. We propose a reformulation of the supertree building problem that allows a computationally effective solution. We introduce a biologically natural requirement that the supertree is sought for such that it does not contain clades incompatible with those existing in the input trees. The algorithm was tested with simulated and biological trees and was shown to possess an almost square complexity even if horizontal transfers are allowed. If HGTs are not assumed, the algorithm is mathematically correct and possesses the longest running time of n3 x[V0]3, where n is the number of input trees and [V0] is the total number of species. The authors are unaware of analogous solutions in published evidence. The corresponding inferring program, its usage examples and manual are freely available at http://lab6.iitp.ru/en/super3gl. The available program does not implement HGTs. The generalized case is described in the publication "A tree nearest in average to a set of trees" (Information Transmission Problems, 2011).  相似文献   

18.
19.
Several long nucleotide sequences were analysed to find out if any of them are unusual in terms of the possible formation of “hairpins” (pairs of complementary runs of nucleotides forming double-stranded structures) as compared to random sequences. The RNA of MS2 bacteriophage has more potential hairpins with short loops (up to 10 bases in a loop) than found in random sequences with the same length and base composition. Other analyzed nucleotide sequences (SV40, φX174, Fd and 16S rRNA) behaved very much as their corresponding random ones. Most of the extra hairpins of the MS2 RNA are estimated to be thermodynamically stable. These potential hairpins might play some role in the function of the MS2 RNA.  相似文献   

20.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号