首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annexins belong to a family of Ca2+- and phospholipid-binding proteins that can mediate the aggregation of granules and vesicles in the presence of Ca2+. We have studied the effects of different divalent metal ions on annexin-mediated aggregation of liposomes using annexins isolated from rabbit liver and large unilamellar vesicles prepared from soybean asolectin II-S. In the course of these studies, we have found that annexin-mediated aggregation of liposomes can be driven by various earth and transition metal ions other than Ca2+. The ability of metal ions to induce annexin-mediated aggregation decreases in the order: Cd2+ > Ba2+, Sr2+ > Ca2+ > Mn2+ > Ni2+ > Co2+. Annexin-mediated aggregation of vesicles is more selective to metal ions than the binding of annexins to membranes. We speculate that not every type of divalent metal ion can induce conformational change sufficient to promote the interaction of annexins either with two opposing membranes or with opposing protein molecules. Relative concentration ratios of metal ions in the intimate environment may be crucial for the functioning of annexins within specialized tissues and after treatment with toxic metal ions.  相似文献   

2.
Mutations in the dysferlin gene cause limb girdle muscular dystrophy type 2B and Miyoshi myopathy. We report here the results of expression profile analyses and in vitro investigations that point to an interaction between dysferlin and the Ca2+ and lipid-binding proteins, annexins A1 and A2, and define a role for dysferlin in Ca2+-dependent repair of sarcolemmal injury through a process of vesicle fusion. Expression profiling identified a network of genes that are co-regulated in dysferlinopathic mice. Co-immunofluorescence, co-immunoprecipitation, and fluorescence lifetime imaging microscopy revealed that dysferlin normally associates with both annexins A1 and A2 in a Ca2+ and membrane injury-dependent manner. The distribution of the annexins and the efficiency of sarcolemmal wound-healing are significantly disrupted in dysferlin-deficient muscle. We propose a model of muscle membrane healing mediated by dysferlin that is relevant to both normal and dystrophic muscle and defines the annexins as potential muscular dystrophy genes.  相似文献   

3.
Miwa N  Uebi T  Kawamura S 《The FEBS journal》2008,275(20):4945-4955
S100 proteins and annexins both constitute groups of Ca2+-binding proteins, each of which comprises more than 10 members. S100 proteins are small, dimeric, EF-hand-type Ca2+-binding proteins that exert both intracellular and extracellular functions. Within the cells, S100 proteins regulate various reactions, including phosphorylation, in response to changes in the intracellular Ca2+ concentration. Although S100 proteins are known to be associated with many diseases, exact pathological contributions have not been proven in detail. Annexins are non-EF-hand-type Ca2+-binding proteins that exhibit Ca2+-dependent binding to phospholipids and membranes in various tissues. Annexins bring different membranes into proximity and assist them to fuse, and therefore are believed to play a role in membrane trafficking and organization. Several S100 proteins and annexins are known to interact with each other in either a Ca2+-dependent or Ca2+-independent manner, and form complexes that exhibit biological activities. This review focuses on the interaction between S100 proteins and annexins, and the possible biological roles of these complexes. Recent studies have shown that S100-annexin complexes have a role in the differentiation of gonad cells and neurological disorders, such as depression. These complexes regulate the organization of membranes and vesicles, and thereby may participate in the appropriate disposition of membrane-associated proteins, including ion channels and/or receptors.  相似文献   

4.
Calcium signaling and annexins   总被引:8,自引:0,他引:8  
The annexins, are a family of calcium ion (Ca2+)-binding proteins whose physiological functions are poorly understood. Although many diverse functions have been proposed for these proteins, such as in vesicle trafficking, this review focuses on their proposed roles as Ca2+ or other ion channels, or as intracellular ion channel regulators. Such ideas are founded mainly on in vitro and structural analyses, but there is increasing evidence that at least some members of this protein family may indeed play a part in intracellular Ca2+ signaling by acting both as atypical ion channels and as modulators of ion channel activity. This review first introduces the annexin family, then discusses intracellular localization, developmental regulation, and modes of membrane association of annexins, which suggest roles in Ca2+ homeostasis. Finally, it examines the structural and electrophysiological data that argue for key roles for annexins in the control of ion fluxes.  相似文献   

5.
Annexin-actin interactions   总被引:1,自引:0,他引:1  
The actin cytoskeleton is a malleable framework of polymerised actin monomers that may be rapidly restructured to enable diverse cellular activities such as motility, endocytosis and cytokinesis. The regulation of actin dynamics involves the coordinated activity of numerous proteins, among which members of the annexin family of Ca2+- and phospholipid-binding proteins play an important role. Although the roles of annexins in actin dynamics are not understood at a mechanistic level, annexins have the requisite properties to integrate Ca2+-signaling with actin dynamics at membrane contact sites. In this review we discuss the current state of knowledge on this topic, and consider how and where annexins may fit into the complex molecular machinery that regulates the actin cytoskeleton.  相似文献   

6.
Protoplasts isolated from root cap cells of maize were shown to secrete fucose-rich polysaccharides and were used in a patch-clamp study to monitor changes in whole-cell capacitance. Ca2+ was required for exocytosis, which was measured as an increase in cell capacitance during intracellular dialysis with Ca2+ buffers via the patch pipette. Exocytosis was stimulated significantly by small increases above normal resting [Ca2+]. In the absence of Ca2+, protoplasts decreased in size. In situ hybridization showed significant expression of the maize annexin p35 in root cap cells, differ-entiating vascular tissue, and elongating cells. Dialysis of protoplasts with maize annexins stimulated exocytosis at physiological [Ca2+], and this could be blocked by dialysis with antibodies specific to maize annexins. Dialysis with milli-molar concentrations of GTP strongly inhibited exocytosis, causing protoplasts to decrease in size. GTPgammaS and GDPbetaS both caused only a slight inhibition of exocytosis at physiological Ca2+. Protoplasts were shown to internalize plasma membrane actively. The results are discussed in relation to the regulation of exocytosis in what is usually considered to be a constitutively secreting system; they provide direct evidence for a role of annexins in exocytosis in plant cells.  相似文献   

7.
Annexins are calcium-dependent phospholipid binding proteins that are implicated in the regulation of both intracellular and extracellular thrombostatic mechanisms in the vascular endothelium. Tight control of annexin gene expression and targeting of annexin proteins is therefore of importance in maintaining the health of the endothelium. Because annexins are abundant in vascular endothelial cells and could be either dysregulated by or contribute to anomalies in Ca2+ signaling, we investigated annexin gene expression and subcellular localization in human umbilical vein endothelial cells (HUVEC) in a model of chronic oxidative stress. HUVEC were cultured under mild hyperoxic conditions in a custom-built chamber to induce oxidative stress over a period of 12 days. Although annexin expression levels did not change significantly in response to hyperoxic stress, immunofluorescence analysis revealed striking effects on the subcellular localization of certain annexins, including the redistribution of annexins 5 and 6 from the cytosol to the nucleus. In addition, oxidative stress modulated the responses of certain annexins to stimulation with a range of pharmacological and physiological Ca2+-mobilizing agonists, in a manner that suggested that annexin localization is regulated via the complex integration of both Ca2+ and intracellular signaling pathways. These results show that differential regulation of annexin localization by oxidative stress may have a causative role in the cellular pathophysiology of vascular endothelial cell disease.  相似文献   

8.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

9.
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.  相似文献   

10.
Annexins as nucleotide-binding proteins: facts and speculations   总被引:2,自引:0,他引:2  
Annexins are ubiquitous multifunctional Ca2+ and phospholipid-binding proteins whose mechanism of function remains largely unknown. The accumulated in vitro experimental evidence indicates that ATP and GTP are functional ligands for nucleotide-sensitive annexin isoforms. Such nucleotide binding could modulate Ca2+ homeostasis, vesicular transport and/or signal transduction pathways and link them to cellular energy metabolism. Alternatively, since annexins are able to interact with other nucleotide-utilizing proteins, such as various kinases, GTPases and structural proteins, these proteins could influence the guanine nucleotide exchange metabolism and/or control the activity of various G proteins. The nucleotide-binding properties of annexins may affect the development or maintenance of some pathologies and diseases in which changes in physiological concentrations of purine nucleotides or disruption of Ca2+ homeostasis are crucial targets.  相似文献   

11.
N H Battey  N C James    A J Greenland 《Plant physiology》1996,112(3):1391-1396
The isolation, cloning, and sequencing of two full-length cDNAs corresponding to the root tip forms of the maize (Zea mays L. cv Clipper) annexins p33 and p35 are described. These are the first complete sequences for the widely reported doublet of plant annexins. The predicted sequences can be divided into four repeat domains characteristic of the annexin family, but Ca2+ binding by the type-II site typical of annexins would be predicted to occur only in repeats 1 and 4. This reduced number of sites is consistent with previously reported biochemical data indicating a high Ca2+ requirement for membrane association. Although the two annexins are very similar (80% amino acid identity), their genes are quite distinct, as demonstrated by their different 3' noncoding regions and Southern blotting. The predicted sequences of the root tip proteins are very similar to regions known from peptide sequencing of the coleoptile proteins. Because a rather small gene family is indicated, the implication is that there may be less functional diversity than in animal cells. Furthermore, the sequence data clearly show that plant annexins form a very distinct group compared with those from other kingdoms.  相似文献   

12.
Porcine heart was observed to express annexins V (CaBP33) and VI in large amounts, and annexins III and IV in much smaller amounts. Annexin V (CaBP33) in porcine heart was examined in detail by immunochemistry. Homogenization and further processing of heart in the presence of EGTA resulted in the recovery of annexin V (CaBP33) in the cytosolic fraction and in an EGTA-resistant, Triton X-100-soluble fraction from cardiac membranes. Including Ca2+ in the homogenization medium resulted in a significant decrease in the annexin V (CaBP33) content of the cytosolic fraction with concomitant increase in the content of this protein in myofibrils, mitochrondria, the sarcoplasmic reticulum and the sarcolemma. The amount of annexin V (CaBP33) in each of these subfractions depended on the free Ca2+ concentration in the homogenizing medium. At the lowest free Ca2+ concentration tested, 0.8 microM, only the sarcolemma appeared to contain bound annexin V (CaBP33). Membrane-bound annexins V (CaBP33) and VI partitioned in two fractions, one EGTA-resistant and Triton X-100-extractable, and one Triton X-100-resistant and EGTA-extractable. Altogether, these data suggest that annexins V and VI are involved in the regulation of membrane-related processes.  相似文献   

13.
To clarify the signaling pathways of oxidative stress-induced apoptosis in bovine aortic endothelial cells (BAEC), we treated cells with 1 mM H 2 O 2 and investigated the roles of protein kinase C &#105 (PKC &#105 ) and Ca 2+ in the accumulation of p53 associated with apoptosis. The treatment of cells with H 2 O 2 caused the accumulation of p53, which was inhibited by rottlerin (a PKC &#105 inhibitor) but not by BAPTA-AM (an intracellular Ca 2+ chelator). PKC &#105 itself was activated through the phosphorylation at tyrosine residues. H 2 O 2 induced the release of cytochrome c and the activation of caspases 3 and 9, and these apoptotic signals were inhibited by rottlerin and BAPTA-AM. These results suggest that PKC &#105 contributes to the accumulation of p53 and that Ca 2+ plays a role in downstream signals of p53 leading to apoptosis in H 2 O 2 -treated BAEC.  相似文献   

14.
The mechanical link coupling cytoskeletal and contractile proteins to the sarcolemma of smooth muscle cells is essential for transmitting tension from the cell's interior to exterior. In addition to the well-characterized actin-integrin associations present in adhaerens junctions, our recent work has postulated the existence of a reversible annexin-dependent membrane-cytoskeleton complex, forged in response to a rise in intracellular Ca2+ concentration following smooth muscle cell stimulation (Babiychuk et al., J. Biol Chem. 1999, 274, 35191-35195). Detailed biochemical characterization of the interactions responsible for the formation of this complex revealed that annexins II and VI interact with actomyosin, or detergent-insoluble glycosphingolipid-enriched membrane domains (rafts) purified from smooth muscle, in a concentration- and Ca2+-dependent manner. Annexin II interacted with lipid rafts with high Ca2+-sensitivity, while for annexin VI this interaction required non-physiologically high concentrations of free Ca2+. However, the Ca2+-sensitivity of the latter interaction strongly increased in the presence of purified smooth muscle actomyosin. The detailed biochemical analysis of the interactions occurring between annexin II, annexin VI, actomyosin and rafts suggests that annexins regulate sarcolemmal organization during smooth muscle cell contraction.  相似文献   

15.
The novel Ca2+-binding protein, Scarf (skin calmodulin-related factor) belongs to the calmodulin-like protein family and is expressed in the differentiated layers of the epidermis. To determine the roles of Scarf during stratification, we set out to identify the binding target proteins by affinity chromatography and subsequent analysis by mass spectrometry. Several binding factors, including 14-3-3s, annexins, calreticulin, ERp72 (endoplasmic reticulum protein 72), and nucleolin, were identified, and their interactions with Scarf were corroborated by co-immunoprecipitation and co-localization analyses. To further understand the functions of Scarf in epidermis in vivo, we altered the epidermal Ca2+ gradient by acute barrier disruption. The change in the expression levels of Scarf and its binding target proteins were determined by immunohistochemistry and Western blot analysis. The expression of Scarf, annexins, calreticulin, and ERp72 were up-regulated by Ca2+ gradient disruption, whereas the expression of 14-3-3s and nucleolin was reduced. Because annexins, calreticulin, and ERp72 have been implicated in Ca2+-induced cellular trafficking, including the secretion of lamellar bodies and Ca2+ homeostasis, we propose that the interaction of Scarf with these proteins might be crucial in the process of barrier restoration. On the other hand, down-regulation of 14-3-3s and nucleolin is potentially involved in the process of keratinocyte differentiation and growth inhibition. The calcium-dependent localization and up-regulation of Scarf and its binding target proteins were studied in mouse keratinocytes treated with ionomycin and during the wound-healing process. We found increased expression and nuclear presence of Scarf in the epidermis of the wound edge 4 and 7 days post-wounding, entailing the role of Scarf in barrier restoration. Our results suggest that Scarf plays a critical role as a Ca2+ sensor, potentially regulating the function of its binding target proteins in a Ca2+-dependent manner in the process of restoration of epidermal Ca2+ gradient as well as during epidermal barrier formation.  相似文献   

16.
1. The fusion of chick-embryo myoblasts to produce myotubes was studied. The myoblasts were grown for 50 h in medium containing 10--20 microM-Ca2+; during this period they achieve fusion competence. 2. A rapid breakdown of phosphatidylinositol is also observed on addition of 1.4 mM-Ca2+ to these cells. This Ca2+ concentration also stimulates rapid myoblast fusion. 3. The breakdown is complete within 15 min and shows the same dependence on Ca2+ concentration as the fusion process. 4. Fusion-incompetence myoblasts and cells where fusion is inhibited by sodium butyrate exhibit no phosphatidylinositol breakdown on Ca2+ addition. 5. The Ca2+ ionophore A23187 inhibits the Ca2+-stimulated breakdown by about 50%, but has no effect on fusion. 6. A concomitant increase in 1,2-diacylglycerol labelled and fall in phosphatidylinositol labelling was observed when the lipids were labelling with [14C]glycerol on increasing the Ca2+ concentration in the medium to 1.4 mM. 7. We propose that the breakdown of phosphatidylinositol with a resultant increase in 1,2-diacylglycerol content of the cell membrane promotes myoblast fusion.  相似文献   

17.
Using an assay system in which phospholipids were immobilised on phenyl-Sepharose, we examined the affinities of the placental annexins VI and IV for binding to specific phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol at Ca2+ concentrations of 0.6, 0.4 and 3.5 microM, respectively, compared to values of 4.5, 4.5 and 20 microM Ca2+, respectively for purified annexin IV. These values did not change significantly in the presence of other proteins from the family. Neither annexin VI or IV bound to phosphatidylinositol bisphosphate and phosphatidylcholine, even at millimolar concentrations of Ca2+. However, both proteins bound to arachidonic acid, oleic acid and palmitic acid in a Ca(2+)-dependent manner, using the same assay system. The level of binding for both proteins was significantly increased when mixtures of phosphatidylcholine and arachidonic acid were examined. A dose-dependent inhibition of phospholipase A2 by both annexins VI and IV, at millimolar concentrations of Ca2+ was observed when phosphatidylcholine liposomes were used as a substrate. These results raise questions about the interpretation of experiments in which the release of arachidonic acid is used as a measure of lipase activity, and of the validity of the substrate-depletion model for the inhibition of phospholipases by the annexins.  相似文献   

18.
CaPB33 and CaPB37, two annexins purified from bovine brain, interact with a Triton X-100-resistant fraction (cytoskeleton) from bovine brain membranes in a Ca2(+)-dependent way in vitro. The binding is saturable with respect to the CaBP33-CaBP37 concentration, half-maximal binding occurring at approximately 15 micrograms of the CaBP33-CaBP37 mixture/ml. The binding of these two annexins to the crude cytoskeleton preparation as a function of free Ca2+ concentration is biphasic, with half-maximal binding at approximately 50 microM and approximately 400 microM free Ca2+ for the first and the second component, respectively. By an overlay technique, CaBP33 and CaBP37 bind to a set of low Mr polypeptides (10-20 kDa) in the crude cytoskeleton preparation, with formation of an 85-90 kDa complex as investigated in cross-linking experiments. No binding of the CaBP33-CaBP37 mixture to either G- or F-actin has been observed. Identification of the CaBP33-CaBP37-binding proteins in cytoskeletons would help elucidating the function(s) of these annexins in the brain.  相似文献   

19.
Intracellular calcium concentration ([Ca2+]i) in articular chondrocytes changes during mechanical challenges associated with joint movements, because of the fluctuation of the extracellular osmotic environment during joint loading. Matrix synthesis by chondrocytes is modulated by loading patterns, possibly mediated by variations in intracellular composition, including [Ca2+]i. The present study has employed the Ca(2+)-sensitive fluoroprobe Fura-2 to determine the effects of hypertonic shock on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a hypertonic shock, [Ca2+]i rapidly increased by approximately 300%, reaching a maximal value within 50 s following the hypertonic shock with a recovery of more than 90% towards the initial [Ca2+]i within 5 min. The effect was inhibited by removal of extracellular Ca2+ ions, but not by thapsigargin, indicating that the rise in [Ca2+]i is only a result of influx from the extracellular medium. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels, TRPV channels or stretch-activated cation channels. Non-specific inhibitors of Ca2+ channels like CdCl2, NiCl2, LaCl3 and ZnCl2 significantly attenuated the response, although the extent in which CdCl2 and NiCl2 (both of them inhibitors of annexin-mediated Ca2+ fluxes) inhibited the response was significantly greater. The rise was also sensitive to KBR7943, inhibitor of NCE reverse mode and trifluoperazine, inhibitor of the activity of annexins. Hypertonic shock also produced also hyperpolarisation of chondrocytes (Em measured by means of Di-BA-C4(3), a membrane potential sensitive dye), which was inhibited by TEA-Cl and BaCl, but was not affected by changing the extracellular solution to Ca(2+)-free HBS. Inhibition of hyperpolarisation completely abolished the [Ca2+]i rise following hypertonic shock. Treatment with retinoic acid, which can increase the activity of annexins as Ca2+ transport pathways caused a significant increase in [Ca2+]i. The recovery of [Ca2+] was inhibited by benzamil and was dependent on extracellular Na+, but was unaffected by Na-orthovanadate, an inhibitor of plasma Ca(2+)-ATPase. We conclude that in response to hypertonic shock, NCE reverse mode and annexins are the pathways responsible for the [Ca2+]i increase, while forward mode operation of NCE is responsible for the subsequent extrusion of Ca2+ and recovery of [Ca2+]i towards initial values.  相似文献   

20.
The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号