首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gradients of Intercellular CO(2) Levels Across the Leaf Mesophyll   总被引:5,自引:5,他引:0       下载免费PDF全文
Most current photosynthesis models, and interpretations of many wholeleaf CO2 gas exchange measurements, are based on the often unstated assumption that the partial pressure of CO2 is nearly uniform throughout the airspaces of the leaf mesophyll. Here we present measurements of CO2 gradients across amphistomatous leaves allowed to assimilate CO2 through only one surface, thus simulating hypostomatous leaves. We studied five species: Eucalyptus pauciflora Sieb. ex Spreng., Brassica chinensis L., Gossypium hirsutum L., Phaseolus vulgaris L., and Spinacia oleracea L. For Eucalyptus, maximum CO2 pressure differences across the leaf mesophyll were 73 and 160 microbar when the pressures outside the lower leaf surface were 310 and 590 microbar, respectively. Using an approximate theoretical calculation, we infer that if the CO2 had been supplied equally at both surfaces then the respective mean intercellular CO2 pressures would have been roughly 12 and 27 microbar less than the pressures in the substomatal cavities in these cases. For ambient CO2 pressures near 320 microbar, the average and minimum pressure differences across the mesophyll were 45 and 13 microbar. The corresponding mean intercellular CO2 pressures would then be roughly 8 and 2 microbar less than those in the substomatal cavities. Pressure differences were generally smaller for the four agricultural species than for Eucalyptus, but they were nevertheless larger than previously reported values.  相似文献   

2.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

3.
Wong SC  Woo KC 《Plant physiology》1986,80(4):877-883
Rates of CO2 assimilation and steady state chlorophyll a fluorescence were measured simultaneously at different intercellular partial pressures of CO2 in attached cotton (Gossypium hirsutum L. cv Deltapine 16) leaves at 25°C. Electron transport activity for CO2 assimilation plus photorespiration was calculated for these experiments. Under light saturating (1750 microeinsteins per square meter per second) and light limiting (700 microeinsteins per square meter per second) conditions there was a good correlation between fluorescence and the calculated electron transport activity at 19 and 200 millibars O2, and between fluorescence and rates of CO2 assimilation at 19 millibars but not 200 millibars O2. The values of fluorescence measured at about 220 microbars intercellular CO2 were not greatly affected by increasing O2 from 19 to 800 millibars. Fluorescence increased with light intensity at any one intercellular CO2 partial pressure. But the values obtained for fluorescence, expressed as a ratio of the maximum fluorescence obtained in DCMU-treated tissue, over the same range of CO2 partial pressure at 500 microeinsteins per square meter per second were similar to those obtained at 1000 and 2000 microeinsteins per square meter per second. There were two phases in the observed correlation between fluorescence and calculated electron transport activity: an initial inverse relationship at low CO2 partial pressures which reversed to a positive correlation at higher values of CO2 partial pressures. Similar results were observed in the C3 species Helianthus annuus L., Phaseolus vulgaris L., and Brassica chinensis. In all C4 species (Zea mays L., Sorghum bicolor L., Panicum maximum Jacq., Amaranthus edulis Speg., and Echinochloa frumentacea [Roxb.] Link) examined changes in fluorescence were directly correlated with changes in CO2 assimilation rates. The nature and the extent to which Q (primary quencher) and high-energy state (qE) quenching function in determining the steady state fluorescence obtained during photosynthesis in leaves is discussed.  相似文献   

4.
We observed that stomata of Gossypium hirsutum, Glycine max and Xanthium strumarium respond to a change in vapour pressure difference between leaf and air at ambient partial pressures of CO2 and below the CO2 compensation point. Our report is at variance with a recent report (J. A. Bunce 1997, Plant, Cell and Environment 20, pp. 131–135) that stomatal sensitivity of leaves to a change in vapour pressure difference between leaf and air was eliminated when gas exchange measurements were made at near-zero carbon dioxide partial pressures (0–5 Pa).  相似文献   

5.
Glycolate and ammonia excretion plus oxygen exchanges were measured in the light in l-methionine-dl-sulfoximine treated air-grown Chlamydomonas reinhardii. At saturating CO2 (between 600 and 700 microliters per liter CO2) neither glycolate nor ammonia were excreted, whereas at the CO2 compensation concentration (<10 microliters per liter CO2) treated algae excreted both glycolate and ammonia at rates of 37 and 59 nanomoles per minute per milligram chlorophyll, respectively. From the excretion values we calculate the amount of O2 consumed through the glycolate pathway. The calculated value was not significantly different from the component of O2 uptake sensitive to CO2 obtained from the difference between O2 uptake of the CO2 compensation point and at saturating CO2. This component was about 40% of stationary O2 uptake measured at the CO2 compensation point. From these data we conclude that glyoxylate decarboxylation in air-grown Chlamydomonas represents a minor pathway of metabolism even in conditions where amino donors are deficient and that processes other than glycolate pathway are responsible for the O2 uptake insensitive to CO2.  相似文献   

6.
The tolerance of marine fish larvae to ammonia, nitrite, and nitrate was investigated using the decrease in first-feeding incidence following a 24-h exposure as the criterion of response. Seven species, all hatched from pelagic eggs collected at sea, were used in these experiments: two soleids (Heteromycteris capensis Kaup, Synaptura kleini (Bonapart)), a gadid (Gaidropsarus capensis (Kaup)), and four sparids (Diplodus sargus (L.), Lithognathus mormyrus (L.), Pachymetopon blochi (Val.), and an unidentified species). Concentrations that inhibited first-feeding are compared to 24-h LC50's for the same species, and to concentrations that are known to induce lethal and sublethal responses in other teleost species. Judging from its effect on first-feeding, un-ionized ammonia is considered to be a potential hazard in the rearing tank; nitrite and nitrate are non-toxic at levels likely to be encountered in practical marine fish culture. Data are presented on the age at first-feeding and point of no return for 10 species.  相似文献   

7.
Summary Ten species of brown macroalgae (five eulittoral and one submersed species of the Fucales; four submersed species of the Laminariales) from a rocky shore at Arbroath, Scotland, were examined for characteristics of emersed photosynthesis in relation to the partial pressure of CO2 and O2. The five eulittoral species of the Fucaceae were approaching CO2 saturation for light-saturated photosynthesis at normal air levels of CO2 (35 Pa) in 21 kPa O2. The normally submersed algae are further from CO2 saturation under these conditions, especially in the case of the four members of the Laminariales. The rate of net photosynthesis in the Fucaceae is O2-independent in the range 2–21 kPa O2 over the entire range of CO2 partial pressure tested (compensation up to 95 Pa). For the other five algae tested, net photosynthesis is slightly inhibited by O2 at 21 kPa relative to 2 kPa over the entire range of CO2 partial pressures tested (compensation up to 95 Pa). CO2 compensation partial pressures are low (<0.5 Pa) for the Fucaceae and independent of O2 in the range 2–42 kPa. For the other five algae, the CO2 compensation partial pressure are higher, and increased with O2 partial pressure in the range 2–42 kPa. These gas exchange data show that the Fucaceae exhibit more C4-like characteristics of their photosynthetic physiology than do the other five species tested, although even the Laminariales and Halidrys siliquosa are not classic C3 plants in their photosynthetic physiology. These data suggest that, in emersed conditions as well as in the previously reported work on submersed photosynthesis, a CO2 concentrating mechanism is operating which, by energized transmembrane transport of inorganic C, accumulates CO2 at the site of RUBISCO and, at least in part, suppresses the oxygenase activity. Work with added extracellular carbonic anhydrase (CA), and with a relatively membrane-impermeant inhibitor of the native extracellular CA activity (acetazolamide), suggests that, in emersed conditions as well as in the previously reported work on algae submersed in seawater at pH 8, HCO inf3 sup– is the major inorganic C species entering the cell. At optimal hydration, the rate of emersed photosynthesis in air is not less than the rate of photosynthesis when submersed in seawater, at least for the Fucaceae. 13C ratios of organic C for the Fucaceae are slightly more negative than is the case for the other five algae; these data are consitent with substantial (half or more of the entering inorganic C) leakage of CO2 from the accumulated pool, and with some contribution of atmospheric CO2 to the organic C gain by the eulittoral algae. The predicted increase in N use efficiency of photosynthesis in the Fucaceae, with their more strongly developed CO2 concentrating mechanism, is consistent with data on emersed, but not submersed, photosynthesis for the algae collected from the wild and thus at a poorly defined N status. The more C4-like gas exchange charateristics of photosynthesis in the eulittoral Fucaceae may be important in increasing the water use efficiency of emersed photosynthesis from the limited capital of water available for transpiration by a haptophyte.  相似文献   

8.
When leaflets of bean and leaves of other species of C3 plants are illuminated in the absence of CO2 and at low O2 partial pressure, the capacity for CO2 assimilation at saturating light and its efficiency at low light intensities are inhibited. This photoinhibition is dependent on leaflet age and period of illumination. In young leaflets and following short exposure to these photoinhibitory conditions, some recovery of CO2 assimilation capacity is observed immediately after treatment. Following substantial (70 to 80%) photoinhibition of CO2 assimilation, recovery in fully expanded leaflets is observed only after 48 hours in normal air. The photoinhibition is largely prevented by providing CO2 at partial pressures equivalent to the CO2 compensation point, or by >210 millibars O2 which permits internal CO2 production by photorespiration. If leaflets are illuminated in 60 microbars CO2 and 210 millibars O2 (the CO2 compensation point in air), no photoinhibition is observed. Electron transport processes and fluorescence emission associated with photosystem II are inhibited in chloroplast thylakoids isolated from leaflets after illumination in zero CO2 and 10 millibars O2. These studies support the hypothesis that CO2 recycling through photorespiration is one means of effectively dissipating excess photochemical energy when CO2 supply to illuminated leaves is limited.  相似文献   

9.
The response of several leaf gas exchange parameters were monitored with decreasing leaf water potential in Phaseolus vulgaris L. leaflets. These included photosynthesis, transpiration, CO2 compensation point, ribulose 1,5-diphosphate carboxylase activity, boundary layer plus stomatal, and mesophyll resistance to diffusion of CO2. Mesophyll resistance was calculated under two assumptions: (a) the CO2 concentration at the chloroplast was zero, and (b) it was equal to the CO2 compensation point.  相似文献   

10.
Activity ratios and carbamylation ratios of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were determined for leaves of Phaseolus vulgaris and Spinacia oleracea exposed to a variety of partial pressures of CO2 and O2 and photon flux densities (PFD). It was found that activity ratios accurately predicted carbamylation ratios except in extracts from leaves held in low PFD. In particular, it was confirmed that the loss of RuBPCase activity in low partial pressure of O2 and high PFD results from reduced carbamylation. Activity ratios of RuBPCase were lower than carbamylation ratios for Phaseolus leaves sampled in low PFD, presumably because of the presence of 2-carboxyarabinitol 1-phosphate. Spinacia leaves sampled in darkness also exhibited lower activity ratios than carbamylation ratios indicating that this species may also have an RuBPCase inhibitor even though carboxyarabinitol 1-phosphate has not been detected in this species in the past.  相似文献   

11.
The mechanism responsible for the inhibition of net carbon exchange (NCE) which was reported previously (DR Geiger et al. 1986 Plant Physiol 82: 468-472) was investigated by applying glyphosate [N-(phosphonomethyl)glycine] to exporting leaves of sugar beet (Beta vulgaris L.). Leaf internal CO2 concentration (Ci) remained constant despite decreases in stomatal conductance and NCE following glyphosate treatment, indicating that the cause of the inhibition was a slowing of carbon assimilation rather than decreased conductance of CO2. Throughout a range of CO2 concentrations, NCE rate at a given Ci declined gradually, with the time-series of response curves remaining parallel. Gas exchange measurements revealed that disruption of chloroplast carbon metabolism was an early and important factor in mediating these glyphosate effects, perhaps by slowing the rate of ribulose bisphosphate regeneration. An increase in the CO2 compensation point accompanied the decrease in NCE and this increase was hastened by stepwise lowering of the ambient CO2 concentration. Eventually the CO2 compensation point approached the CO2 level of air and the difference between internal and external CO2 concentrations decreased. In control and in glyphosate-treated plants, both carbon assimilation and photorespiration at atmospheric CO2 level were inhibited to a similar extent of air level of O2. Maintaining leaves in low O2 concentration did not prevent the decline in NCE rate.  相似文献   

12.
Aluminium toxicity is one of the major limiting factors of crop productivity on acid soils. High levels of available aluminium in soil may induce phosphorus deficiency in plants. This study investigates the influence of Aluminium (Al) on the phosphate (Pi) uptake of two Phaseolus species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L. The two bean species were treated first with solutions of Al at different concentrations (0, 25, 50 and 100 μM, pH 4.50) and second with solutions of Pi (150 μM) at pH 4.50. The higher the Al concentration the higher the Al concentration sorbed but P. vulgaris L var. Red Kidney adsorbed significantly more Al than P. lunatus L. Both species released organic acids: P. vulgaris L var. Red Kidney released fumaric acid and P. lunatus L. fumaric and oxalic acids which could have hindered further Al uptake.The two bean species showed a sigmoid Pi uptake trend but with two different mechanisms. P. vulgaris L var. Red Kidney showed a starting point of 3 h whereas P. lunatus L. adsorbed Pi immediately within the first minutes. In addition, P. vulgaris L var. Red Kidney presented significantly higher Pi uptake (higher uptake rate ‘k’ and higher maximum adsorption ‘a’ of the kinetic uptake model). The Al treatments did not significantly influence Pi uptake. Results suggest that P. lunatus L. might adopt an external Al detoxification mechanism by the release of oxalic acid. P. vulgaris L var. Red Kidney on the other hand seemed to adopt an internal detoxification mechanism even if the Al sorbed is poorly translocated into the shoots. More detailed studies will be necessary to better define Al tolerance and/or resistance of Phaseolus spp.  相似文献   

13.
The physiological site of ethylene action on CO2 assimilation was investigated in intact plants of Glycine max L., using a whole-plant, open exposure system equipped witha remotely operated single-leaf cuvette. The objective of the study was met by investigating in control and ethylene-treated plants the (a) synchrony in response of CO2 assimilation, stomatal conductance to water vapor, and substomatal CO2 partial pressure; (b) response of CO2 assimilation as a function of a range of substomatal CO2 partial pressures; and (c) response of CO2 assimilation as a function of a range of photon flux densities. After exposure to 410 micromoles per cubic meter of ethylene for 2.0 hours, CO2 assimilation and stomatal conductance declined in synchrony, while substomatal CO2 partial pressure remained unchanged until exposure times equaled and exceeded 3.0 hours. Because incipient changes in CO2 assimilation occurred without a change in the CO2 partial pressure in the leaf interior, it is concluded that both stomatal physiology and the chloroplast's CO2 assimilatory capacity were initial sites of ethylene action. After 3.5 hours the effect of ethylene on stomatal conductance and CO2 assimilation exhibited saturation kinetics, and the effect was substantially more pronounced for stomatal conductance than for CO2 assimilation. Based on the response of CO2 assimilation to a range of substomatal CO2 partial pressures, ethylene did not affect either the CO2 compensation point or carboxylation efficiency at subsaturating CO2 partial pressures. Above-ambient supplies of CO2 did not alleviate the diminished rates of CO2 assimilation. In partitioning the limitations imposed on CO2 assimilation in control and ethylene-treated plants, the stomatal component accounted for only 16 and 4%, respectively. The response of CO2 assimilation to a range of photon flux densities suggests that ethylene reduced apparent quantum yield by nearly 50%. Thus, the pronounced decline in net photosynthetic CO2 assimilation in the presence of ethylene was due more to a loss in the mesophyll tissue's intrinsic capacity to assimilate CO2 than to a reduction in stomatal conductance.  相似文献   

14.
The dependence of the CO2 compensation concentration on O2 partial pressure and the dependence of differential uptake of 14CO2 and 12CO2 on CO2 and O2 partial pressures are analyzed in illuminated white clover (Trifolium repens L.) leaves. The data show a deviation of the photosynthetic gas exchange from ribulose bisphosphate carboxylase oxygenase kinetics at 10°C but not at 30°C. This deviation is due to an effect of CO2 partial pressure on the ratio of photosynthesis to photorespiration which can be explained if active inorganic carbon transport is assumed.  相似文献   

15.
The CO2- and H2O-exchanges in the flag leaf and the ear of a spring wheat cultivar (Triticum aestivum L. cv. Arkas) were measured at CO2 partial pressures, pi(CO2), between 8 and 400 Pa under high photosynthetic photon flux densities (2000 μmol m?2 s?1). The experiments were carried out on each organ separately while attached to the intact plant, from the time of ear emergence through senescence. To study the contribution of the kernels to the gas exchange of ears, experiments were also carried out on sterilized ears (treatment A), and on ears from which the kernels were removed (treatment B). Flag leaves and ears differed considerably with regard to CO2-dependence of assimilation, response of stomata to varying pa(CO2), CO2 compensation point (and its temperature dependence), dark respiration, and dissimilation in the light (i.e. CO2 production which is not due to oxygenation of ribulose 1,5-bisphosphate). The higher dark respiration of the ear originated mainly from the kernels and continued to some extent in the light. Thus, the CO2 compensation point was attained at higher CO2 partial pressures for the ear than for the flag leaf. The CO2 uptake of the ear was not saturated at intercellular CO2 partial pressures below 180 Pa CO2, while that of the flag leaf reached saturation at about 80 Pa CO2. CO2-saturated rates of CO2 uptake were 2.5 and 1.5 times the rates at natural CO2 partial pressure for ear and flag leaf, respectively. The stomatal conductance decreased with rising CO2 partial pressure above 35 Pa, in a more pronounced manner for the flag leaf than for the ear.  相似文献   

16.
17.
Summary Seedlings of two mangrove species, Avicennia marina and Aegiceras corniculatum, were grown in a range of salinities and humidities in controlled environment chambers, and Phaseolus vulgaris plants were grown in the glasshouse. The fractionation of carbon isotopes in the three species was correlated with the ratio of intercellular and ambient partial pressures of CO2. The results are consistent with fractionation being due both to diffusion in air and to carboxylation in the leaf. It was concluded that the latter process discriminates against 13CO2 relative to 12CO2 by about 27.  相似文献   

18.
Steady-state room temperature variable fluorescence from leaves was measured as a function of CO2 pressure in Xanthium strumarium L. and Phaseolus vulgaris L. Measurements were made in a range of light intensities, at normal and low O2 parital pressure and over a range of temperatures. At low CO2 pressure fluorescence increased with increasing CO2. At higher CO2 pressure fluorescence usually decreased with increasing CO2 but occasionally increased slightly. The transition CO2 pressure between the responses could be changed by changing light, O2 pressure, or temperature. This breakpoint in the fluorescence-CO2 curve was a reliable indicator of the transition between ribulose 1,5-bisphosphate (RuBP) saturated assimilation and RuBP regeneration limited assimilation. The fluorescence signal was not a reliable indicator of O2-insensitive assimilation in these C3 species.  相似文献   

19.
Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O3 partial pressures reduced net CO2 assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O3 for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O3 when compared to the controls after 5 hours. Intercellular CO2 partial pressure (ci) was lower for leaves exposed to 0.2 micropascals per pascal O3 when compared to the controls, while ci of the leaves treated with 0.6 micropascals per pascal of 03 increased during the fumigation. The long-term effects of ambient O3 and short-term exposure to acute levels of O3 reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.  相似文献   

20.
Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20–100 mg m−3. Removal efficiencies of BFC and BFS were in the range of 97–99% and 95–99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH3 in the resultant acidity. Nitrate was the dominant product of NH3 transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号