首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferases (GSTs) by different stresses and endogenous trans-2-hexenal content were determined in search of a common signal for GST induction. All of the stresses showed significant induction, As2O3 causing the highest induction followed by trans-2-hexenal. The trans-2-hexenal content was highest in trans-2-hexenal-treated seedlings and next-highest in methyl jasmonate-treated seedlings, whereas high temperature- and As2O3-treated seedlings had trans-2-hexenal contents lower than that of control seedlings. Induction of GST, lipoxygenase (LOX) and hydroperoxide lyase (HPL) was compared, since trans-2-hexenal and methyl jasmonate are the products of the LOX pathway. All four stresses showed weak LOX induction, high temperature causing the highest induction. However, only methyl jasmonate caused weak HPL induction. Both antioxidants or oxidants induced GST to different degrees. Glutathione contents of reduced glutathione (GSH) or oxidized glutathione (GSSG)-treated seedlings were significantly higher than the content of control seedlings, whereas those treated with other antioxidants or oxidants had contents similar to or less than control seedlings. The GSH:GSSG ratio was lowest in GSSG-treated seedlings and next-lowest in GSH-treated seedlings. The results of this study suggest that pumpkin GSTs are not induced through a common signalling pathway and that redox perturbation plays a role in pumpkin GST induction.  相似文献   

3.
Agrobacterium rhizogenes (wild-type strains 8196 and 15834) transformation of pumpkin (Cucurbita pepo L.) intact seedlings grown in vivo, and 6–8-day-old excised cotyledons cultured in axenic conditions was investigated. Transformed (hairy) roots were successfully induced only on the excised cotyledons with the strain 8196, while intact seedlings failed to form hairy roots with either of the two different bacterial strains. Axenic hairy-root cultures established on MS medium without hormones grew vigorously. Mannopine was detected in all transgenic root clones examined. The peroxidase activity in transformed roots was higher compared with normal roots. Electrophoretic analyses of soluble proteins and isoperoxidases showed substantial differences between transformed and normal pumpkin roots.  相似文献   

4.
南瓜对镉的吸收积累特性研究   总被引:1,自引:0,他引:1  
对南瓜进行盆栽试验,通过加入不同含量的镉、CaCO3和草炭土,研究南瓜对镉的吸收积累特性,利用火焰原子吸收法测定。结果表明,南瓜植株对镉的富集量主要集中在茎、根中;当土壤镉含量小于5mg·kg-1时,对南瓜根的生长有促进作用,当土壤镉含量大于5mg·kg-1时,开始对根的生长产生抑制作用,抑制作用随镉含量的增大而加强;在土壤中施CaCO3,能降低南瓜对镉的吸收;在土壤中加入草炭土,在一定范围内,它能促进南瓜对镉的吸收。  相似文献   

5.
6.
De novo synthesis of phytochrome in pumpkin hooks   总被引:6,自引:2,他引:4       下载免费PDF全文
Phytochrome becomes density labeled in the hook of pumpkin (Cucurbita pepo L.) seedlings grown in the dark on D2O, indicating that the protein moiety of the pigment is synthesized de novo during development. Red light causes a rapid decline of the total phytochrome level in the hook of etiolated seedlings but upon return to the dark, phytochrome again accumulates. These newly appearing molecules are also synthesized de novo. Newly synthesized phytochrome in both dark-grown and red-irradiated seedlings is in the red-absorbing form. Turnover of the red-absorbing form is indicated by the density labeling of phytochrome during a period when the total phytochrome level in the hook of dark-grown seedlings remains constant. However, it was not possible to determine whether this results from intracellular turnover or turnover of the whole cell population during hook growth.  相似文献   

7.
To induce multiple shoots from pumpkin (Cucurbita moschata Duch.), cotyledon explants excised from various ages of seedlings after in vitro germination were cultured on MS augmented with different concentrations of BA (0, 0.5, 1.0 or 2.0 mg l−1). The highest frequency of shoot regeneration (63.7%) was observed from seven-day-old cotyledon explants cultured on MS containing 0.5 mg l−1 BA. The frequency and duration of shoot formation showed close correlation with the donor seedling age. By contrast, BA supply was necessary to promote shoot formation but no differences were observed in relation to different concentrations. Multiple shoots elongated on MS supplemented with 0.1 mg l−1 BA and 5–7 shoots per regenerated explant were recovered. Elongated shoots were rooted on MS, which was easier than that on 2/3MS, 1/2MS, or MS supplemented with 0.1 mg l−1 NAA. The rooted shoots were then transferred to greenhouse where they grew and flowered normally. Quantitative analysis of endogenous auxin (IAA) and cytokinins (iPA and ZR) in initial cotyledon explants of different aged seedlings showed that the regeneration ability of cotyledon explants varied dependently on their endogenous iPA contents. This study therefore deduces that the various organogenic capabilities of cotyledon explants from pumpkin are the result of their endogenous hormonal contents.  相似文献   

8.

Background and aims

Magnesium (Mg) is an essential macronutrient that plays an important role in numerous physiological and biochemical processes of plant. However, Mg deficiency commonly occurs worldwide. Watermelon is an important crop that often suffers from Mg deficiency. This study aims to test whether watermelon performance can be improved by grafting onto rootstocks under low Mg and to clarify the underlying physiological mechanism.

Methods

Self-grafted, bottle gourd (Jingxinzhen No.1) and pumpkin (Jingxinzhen No.4) rootstock-grafted plants were treated with three Mg concentrations: 2.0 mM (normal condition), 0.4 mM (moderate stress), and 0.04 mM (severe stress) for 16 days under hydroponic conditions. Ungrafted watermelon and pumpkin were treated with 2.0 mM and 0.04 mM for 12 days.

Results

The growth of the plants was not affected by 0.4 mM Mg; however, plant growth decreased under 0.04 mM Mg in all graft combinations compared with control (2.0 mM Mg). Pumpkin rootstock grafting significantly increased watermelon growth under low Mg stress (0.04 mM Mg), compared with self-grafted and bottle gourd-grafted plants. The Mg2+ uptake of watermelon plants was increased by grafting onto pumpkin rootstocks, however, root-to-shoot transport capacity of Mg2+ was similar compared with self-grafted plants under 0.04 mM Mg. Gene expression analysis showed that magnesium transporter genes MGT1, MGT3, MGT4, and MGT5 may play an important role in higher Mg2+ uptake of pumpkin root. The photosynthetic parameters and activities of superoxide dismutase, peroxidase and catalase were significantly higher, but malonaldehyde (MDA) content were lower in the pumpkin rootstock grafted plants compared with other graft combinations under 0.04 mM Mg.

Conclusion

Our results provide strong evidence that pumpkin rootstock ‘Jinxinzhen No. 4’ grafting can improve watermelon performance under low Mg stress. The enhanced plant performance is attributed to higher root Mg2+ uptake and the improvement of photosynthesis and antioxidant enzyme activities.
  相似文献   

9.
Turnover of phytochrome in pumpkin cotyledons   总被引:22,自引:3,他引:19       下载免费PDF全文
By using density labeling, it was found that the protein moiety of phytochrome is synthesized de novo in the red-absorbing form in cotyledons of dark-grown pumpkin (Cucurbita pepo L.) seedlings, as well as those irradiated with red light and returned to the dark. The rate of synthesis appears to be unaffected by the light treatment. Turnover of the red-absorbing form was also detected in dark grown seedlings using density labeling, while turnover of the far red-absorbing form is already implied from the well known “destruction” observed in irradiated seedlings. In both cases, true degradation of the protein is involved, but the rate constant of degradation of the far red-absorbing form may be up to two orders of magnitude greater than that of the red-absorbing form. The data indicate that, in pumpkin cotyledons, phytochrome levels are regulated against a background of continuous synthesis through divergent rate constants of degradation of the red and far red-absorbing forms and the relative proportions of the two forms present.  相似文献   

10.
During the germination of pumpkin (Cucurbita sp. Amakuri Nankin) seeds in dark, the activity of glutamine synthetase in cotyledons gradually increased, reaching a maximum at 5 to 6 days. A measurable enhancement (about 4-fold) of the enzyme activity occurred when the seedlings were exposed to continuous illumination from day 4 up to day 8. Glutamine synthetase activity was detectable only in the cytosolic fraction in the etiolated cotyledons, whereas it was found both in the cytosolic and chloroplast fractions in the green cotyledons. The two isoenzymes of glutamine synthetase have been separated by DEAE-cellulose column chromatography of extracts from the green cotyledons. These data indicate that during the greening process the chloroplastic glutamine synthetase is newly synthesized. The roles of cytosolic and chloroplastic glutamine synthetase in germinating pumpkin cotyledons concerning assimilation of NH3 are discussed.  相似文献   

11.
In this research, we investigated the effects of grafting on intermediate metabolites and key enzymes of glycolysis and the tricarboxylic acid (TCA) cycle in self-grafted and salt-tolerant pumpkin rootstock-grafted cucumber seedlings supplied with nutrient solution and subjected to 80 mM Ca(NO3)2 stress for 6 days. Ca(NO3)2 stress induced accumulation of 3-phosphoglycerate (3-PGA) and phosphoenolpyruvate (PEP) in the leaves of self-grafted cucumber seedlings and enhanced the activities of phosphoenolpyruvate carboxylase (PEPC) and enolase (ENO). Succinic acid and malic acid contents and isocitrate dehydrogenase, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) activities in self-grafted seedlings were significantly decreased by Ca(NO3)2 stress. In addition, activities of PEPC, ENO, SDH, and MDH and contents of glycolysis intermediate metabolites (citric, succinic, and malic acids) were significantly higher in leaves of rootstock-grafted seedlings compared with those in self-grafted seedlings under saline conditions. Furthermore, leaf adenosine triphosphate (ATP) content of rootstock-grafted seedlings was relatively higher than that in self-grafted plants under salt stress, with an opposite effect observed on adenosine diphosphate content. These results indicate that rootstock grafting alleviates Ca(NO3)2 stress-induced inhibition of the glycolytic pathway and the TCA cycle in cucumber seedling leaves, which may aid the respiratory metabolism of cucumber seedlings and help maintain a high ATP synthesis level, thereby increasing the biomass of cucumber seedlings and enhancing their salt tolerance.  相似文献   

12.
Esaka M  Fujisawa K  Goto M  Kisu Y 《Plant physiology》1992,100(1):231-237
Ascorbate oxidase expression in pumpkin (Cucurbita spp.) tissues was studied. Specific ascorbate oxidase activities in pumpkin leaf and stem tissues were about 2 and 1.5 times that in the fruit tissues, respectively. In seeds, little ascorbate oxidase activity was detected. Northern blot analyses showed an abundant ascorbate oxidase mRNA in leaf and stem tissues. Fruit tissues had lower levels of ascorbate oxidase mRNA than leaf and stem tissues. Ascorbate oxidase mRNA was not detected in seeds. Specific ascorbate oxidase activity gradually increased during early seedling growth of pumpkin seeds. The increase was accompanied by an increase in ascorbate oxidase mRNA. When ascorbate oxidase activity in developing pumpkin fruits was investigated, the activities in immature fruits that are rapidly growing at 0, 2, 4, and 7 d after anthesis were much higher than those in mature fruits at 14 and 30 d after anthesis. The specific activity and mRNA of ascorbate oxidase markedly increased after inoculation of pumpkin fruit tissues into Murashige and Skoog's culture medium in the presence of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D) but not in the absence of 2,4-D. In the presence of 10 mg/L of 2,4-D, ascorbate oxidase mRNA was the most abundant. Thus, ascorbate oxidase is induced by 2,4-D. These results indicate that ascorbate oxidase is involved in cell growth. In pumpkin callus, ascorbate oxidase activity could be markedly increased by adding copper. Furthermore, immunological blotting showed that the amount of ascorbate oxidase protein was also increased by adding copper. However, northern blot analyses showed that ascorbate oxidase mRNA was not increased by adding copper. We suggest that copper may control ascorbate oxidase expression at translation or at a site after translation.  相似文献   

13.
14.
15.
The pumpkin pulp contains a greater composition of edible polysaccharides and has reported with excellent biological applications. This research pertains to optimize the extraction of polysaccharides from the fleshy portion of the pumpkin using aqueous assisted extraction (AAE). The result showed that the optimal extraction condition of pumpkin polysaccharide was as follows: extraction temperature at 55 °C, pH 4.5, and enzyme concentration of 4000 µ/g for 80 min. Under the optimal extraction condition, the yield of pumpkin polysaccharide via AAE (15.4) was significantly higher. The biological activities of extracted polysaccharide including α-amylase inhibition (57.41% at 1000 µg/mL) and anti-inflammatory (50.41% at 25 µg/mL) activity increased significantly. Additionally, the antioxidant activities of extracted pumpkin polysaccharides including IC50 values of DPPH and ABTS were 59.87% and 58.74%, respectively. The pumpkin polysaccharide has maximum inhibitory effects against bacterial strains especially for Escherichia coli than that of fungal strains. It is suggested that the aqueous assisted extraction of is a cost-effective promising method to decrease the processing time as well as enhancing extracted polysaccharide yield – times.  相似文献   

16.
A novel antifungal protein, Mr = ca. 40 kDa, was isolated from pumpkin rind and designated Pr-1. When purified by anion exchange chromatography and HPLC, it inhibited growth of several fungi including Botrytis cinerea, Fusarium oxysporum, Fusarium solani and Rhizoctonia solani, as well as the yeast, Candida albicans, at 10–20 μM. It did not inhibit growth of Escherichia coli or Staphylococcus aureus even at 200 μM. Laser scanning microscopy of fungal cells exposed to rhodamine-labeled Pr-1 revealed that the protein accumulated and was localized on the cell surface. Uptake of the vital stain, SYTOX Green, was enhanced when fungal conidia were treated with Pr-1 suggesting that the protein has membrane permeabilization activity. Pr-1 was thermostable at 70°C and did not lyse human red blood cells at 128 μM suggesting that the protein may be useful as an antifungal agent with little, if any human cytotoxicity.  相似文献   

17.
Summary Excised cotyledons from 8-d-old pumpkin (Cucurbita pepo L.) seedlings were inoculated with Agrobacterium rhizogenes and cultured on hormone-free Murashige and Skoog medium. At the site of inoculation, transformed hairy roots were successfully induced by using wild strains 8196 (mannopine-type) and 15834 (agropine-type). After a subsequent transfer on a solid MS medium without hormones, roots obtained by transformation with strain 15834 failed to form stable hairy root cultures, while several hairy root lines were established with strain 8196. Three hairy root lines, Cp1, Cp2, and Cp31, have spontaneously generated callus with embryo-like structures after more than 3 yr of growth on the solid medium. The callus proliferation was more frequent when the autoclaving of nutrient medium, pH 5.7, was prolonged to 30 min. Separated calluses continued to proliferate and generated embryos with abnormal morphology. The combination of indole-3-acetic acid and benzyladenine had a favorable influence on embryogenesis and organogenesis in the Cp31 callus line. The Southern analysis of Cp31 root and embryo DNA confirmed the presence of the T-DNA of Agrobacterium rhizogenes.  相似文献   

18.
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulselabeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.  相似文献   

19.
The plant 2S albumins exhibit a spectrum of biotechnologically exploitable functions. Among them, pumpkin 2S albumin has been shown to possess RNase and cell-free translational inhibitory activities. The present study investigated the anticancer, DNase and antifungal activities of pumpkin 2S albumin. The protein exhibited a strong anticancer activity toward breast cancer (MCF-7), ovarian teratocarcinoma (PA-1), prostate cancer (PC-3 and DU-145) and hepatocellular carcinoma (HepG2) cell lines. Acridine orange staining and DNA fragmentation studies indicated that cytotoxic effect of pumpkin 2S albumin is mediated through induction of apoptosis. Pumpkin 2S albumin showed DNase activity against both supercoiled and linear DNA and exerted antifungal activity against Fusarium oxysporum. Secondary structure analysis by CD showed that protein is highly stable up to 90 °C and retains its alpha helical structure. These results demonstrated that pumpkin 2S albumin is a multifunctional protein with host of potential biotechnology applications.  相似文献   

20.
Vanadium (V) is a transition metal found in the Earth crust. V adversely affects plant growth and development. Besides several other management practices, grafting of scion cultivars onto appropriate rootstock provides a suitable solution. Grafting is an important agro-technical procedure utilized to enhance the capacity of plants to tolerate biotic and abiotic stresses. In this study, watermelon was grafted onto bottle gourd and pumpkin rootstock, and self-grafted watermelon plants were utilized as a control. V was applied at the rate of 50 mg/L under hydroponic conditions. The result showed that V application substantially reduces the growth of watermelon plants, however, grafting of watermelon onto bottle gourd and pumpkin rootstock improves V stress tolerance of watermelon by reducing the V concentration in leaf tissues, improving the relative chlorophyll content (SPAD index) and photosynthetic assimilation, up-regulating the expression of SOD (Cla008698, Cla0012125, Cla009820 and Cla001158), glutathione S-transferase (Cla013224) and glutathione peroxidase (Cla021039) genes in the leaves, and enhancing the activities of antioxidant enzymes (SOD, CAT). The scanning electron microscopy (SEM) of the root tips showed that minimal damage of roots was observed for pumpkin roots compared with the roots of watermelon and bottle gourd under V stress conditions. So far as we know, these results are the first evidence that grafting mitigates V stress in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号