首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium (Ca2+) signaling-dependent systems, such as the epidermal differentiation process, must effectively respond to variations in Ca2+ concentration. Members of the Ca2+-binding proteins play a central function in the transduction of Ca2+ signals, exerting their roles through a Ca2+-dependent interaction with their target proteins, spatially and temporally. By performing a suppression subtractive hybridization screen we identified a novel mouse gene, Scarf (skin calmodulin-related factor), which has homology to calmodulin (CaM)-like Ca2+-binding protein genes and is exclusively expressed in differentiating keratinocytes in the epidermis. The Scarf open reading frame encodes a 148-amino acid protein that contains four conserved EF-hand motifs (predicted to be Ca2+-binding domains) and has homology to mouse CaM, human CaM-like protein, hClp, and human CaM-like skin protein, hClsp. The functionality of Scarf EF-hand domains was assayed with a radioactive Ca2+-binding method. By Southern blot and computational genome sequence analysis, a highly related gene, Scarf2, was found 15 kb downstream of Scarf on mouse chromosome 13. The functional Scarf Ca2+-binding domains suggest a role in the regulation of epidermal differentiation through the control of Ca2+-mediated signaling.  相似文献   

2.
The novel Ca2+-binding protein, Scarf (skin calmodulin-related factor) belongs to the calmodulin-like protein family and is expressed in the differentiated layers of the epidermis. To determine the roles of Scarf during stratification, we set out to identify the binding target proteins by affinity chromatography and subsequent analysis by mass spectrometry. Several binding factors, including 14-3-3s, annexins, calreticulin, ERp72 (endoplasmic reticulum protein 72), and nucleolin, were identified, and their interactions with Scarf were corroborated by co-immunoprecipitation and co-localization analyses. To further understand the functions of Scarf in epidermis in vivo, we altered the epidermal Ca2+ gradient by acute barrier disruption. The change in the expression levels of Scarf and its binding target proteins were determined by immunohistochemistry and Western blot analysis. The expression of Scarf, annexins, calreticulin, and ERp72 were up-regulated by Ca2+ gradient disruption, whereas the expression of 14-3-3s and nucleolin was reduced. Because annexins, calreticulin, and ERp72 have been implicated in Ca2+-induced cellular trafficking, including the secretion of lamellar bodies and Ca2+ homeostasis, we propose that the interaction of Scarf with these proteins might be crucial in the process of barrier restoration. On the other hand, down-regulation of 14-3-3s and nucleolin is potentially involved in the process of keratinocyte differentiation and growth inhibition. The calcium-dependent localization and up-regulation of Scarf and its binding target proteins were studied in mouse keratinocytes treated with ionomycin and during the wound-healing process. We found increased expression and nuclear presence of Scarf in the epidermis of the wound edge 4 and 7 days post-wounding, entailing the role of Scarf in barrier restoration. Our results suggest that Scarf plays a critical role as a Ca2+ sensor, potentially regulating the function of its binding target proteins in a Ca2+-dependent manner in the process of restoration of epidermal Ca2+ gradient as well as during epidermal barrier formation.  相似文献   

3.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

4.
Three species of human keratins are shown to have specific localizations within the epidermis. Using an immunohistochemical technique with rabbit antisera prepared against purified human keratins, two distinct epidermal domains were defined. The 45K and 46K MW keratins occur predominantly in the basal epidermal layer, whereas 55K keratin protein occurs chiefly in the suprabasal, differentiated squamous cells. Commitment of proliferating basal cells to terminal differentiation is accompanied by changes in the proportions of keratin species.  相似文献   

5.
Psoriasis is recognized as a chronic inflammatory disease characterized by epidermal hyperproliferation. To identify psoriasis-related genes, we compared the mRNA populations of normal and psoriatic skin. We identified one gene, designated as cornifelin, which showed increased expression in psoriatic skin. Human cornifelin contains 112 amino acids and is expressed in the uterus, cervix, and skin. In situ hybridization analysis demonstrated the presence of human cornifelin in the granular cell layer of the epidermis. To investigate the function of cornifelin, we established a transgenic mouse line overexpressing human cornifelin. Using these mice, we have shown that cornifelin is directly or indirectly cross-linked to at least two other cornified envelope proteins, loricrin and involucrin, in vivo. Overexpression of human cornifelin correlated with decreased loricrin expression and increased involucrin expression in the transgenic mouse. However, abnormality of epidermal differentiation was not observed in the transgenic mouse.  相似文献   

6.
Using specific monoclonal antibodies (DE-K10 and DE-SCK respectively), the expression of some differentiation-related epidermal keratins was studied in 38 human vulvar squamous carcinomas. In the epidermis, expression of keratin 10 (K10) strictly paralleled the extent of differentiation; it was absent in the basal layer, appeared in the first suprabasal layers and increased in concentration towards the granular layer. However, K10 was rarely detected (1 case out of 12) in early stages of vulvar squamous carcinomas (tumours less than 2 cm, clinical stage I) regardless of the tumour grade. In larger and more advanced tumours (greater than 2 cm, clinical stages II and III), K10 was detected in 21 out of 26 cases. Its expression appeared to be related to maturation of malignant keratinocytes, being preferentially detected in more-differentiated parts. Occasionally however, cells that did not show histological signs of keratinisation were also K10-positive. Modified stratum corneum keratins (recognized specifically by monoclonal antibody DE-SCK) were detected in the most keratinized areas (horn pearls and their close vicinity) of some K10-positive tumours, i.e., in a pattern close to their normal expression in terminally differentiated epidermal cells. These data suggest differences in the regulation of K10 expression during the differentiation processes in the normal keratinising squamous epithelium and in squamous carcinomas. While the normal pattern of vulvar epithelial differentiation is accompanied by an increasing expression of K10, malignant keratinocytes, also when these are histologically moderately or well differentiated, cease expressing this keratin in the early stages of tumour development.  相似文献   

7.
In vertebrates, specific regions of skin crucial for interaction with and manipulation of elements in the environment are characterized by specialized epidermis. Regions of specialized epidermis show distinct patterns of cellular differentiation and express specific keratins that provide an increased ability to withstand mechanical strain. The nipple, which must endure the mechanical strain of nursing, is a type of specialized epidermis. The entire ventral skin of the keratin 14 promoter driven PTHrP mouse provides a model for nipple development. To identify novel markers for this specialized epidermis, we have used two-dimensional (2-D) gels, mass spectrometric protein identification, Western blotting and immunohistochemistry to compare intermediate filament preparations from the nipple-like K14-PTHrP ventral skin to that of wild-type littermates. We identified 64 spots on 2-D gels that were increased in expression in the nipple-like skin of the female K14-PTHrP mouse and 11 spots that were elevated in the wild type. Microsequencing suggested that K17 and epiplakin were among the proteins with the greatest increase in expression in the K14-PTHrP ventral skin. Using Western blots and immunohistochemistry, we evaluated the expression of these proteins as well as K6 in the wild-type nipple, K14-PTHrP ventral skin and wild-type ventral skin. In addition, we found that the expression of K6 was minimally changed in the pregnant and lactating nipple, but the expression of a previously identified marker, K2e, was reduced during lactation. Using a model of the mechanical strain induced by nursing, we found that K2e but not K6 expression was responsive to this condition. The identification of epidermal markers and their expression patterns will provide insight into the cellular differentiation patterns of the nipple and the underlying epidermal-mesenchymal interactions that direct this differentiation.  相似文献   

8.
To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development.  相似文献   

9.
We report here the cDNA and amino acid sequences of a human 58-kilodalton type II keratin, K5, which is coexpressed with a 50-kilodalton type I keratin partner, K14, in stratified squamous epithelia. Using a probe specific for the 3'-noncoding portion of this K5 cDNA, we demonstrated the existence of a single human gene encoding this sequence. Using Northern (RNA) blot analysis and in situ hybridization with cRNA probes for both K5 and K14, we examined the expression of these mRNAs in the epidermis and in cultured epidermal cells. Our results indicate that the mRNAs for K5 and K14 are coordinately expressed and abundant in the basal layer of the epidermis. As cells undergo a commitment to terminally differentiate, the expression of both mRNAs seems to be downregulated.  相似文献   

10.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

11.
12.
To study the mechanism of hormone-induced keratin expression in the epidermis during Xenopus metamorphosis, a monospecific antibody was raised against a unique carboxy-terminal peptide of the 63-kDa keratin. Immunohistological analysis demonstrated that the onset of 63-kDa keratin expression showed distinct regional and temporal differences. The expression started at stage 54 in the hindlimb epidermis, at stage 57 in the head, and over 1 month later at stage 63 in the tail. The amount of 63-kDa keratin was further regulated during epidermal stratification and differentiation. The 63-kDa keratin was expressed first in basal epidermal cells before stratification began. The outer layer of the larval epidermis (periderm) did not express the 63-kDa keratin. As the cells moved out of basal layer, they stained more intensely with the anti-keratin antibody indicating that 63-kDa keratin synthesis is up-regulated during differentiation. Similar results were obtained with cultures of purified epidermal cells grown in high calcium conditions. Since we have shown that thyroid hormone (T3) induces 63-kDa keratin gene expression and hydrocortisone (HC) modulates T3 action we examined the effects of T3 and HC at the single cell level with the anti-keratin antibody. Immunostaining demonstrated that T3 alone and T3 plus HC increased the number of 63-kDa keratin-positive cells as well as the amount of 63-kDa keratin per cell. Unexpectedly these hormones had the same effects on head and tail epidermal cells even though the latter cells degenerate during metamorphosis. The major difference between tail and head cells was that the percentage 63-kDa keratin-producing cells was much greater in the head than in the tail.  相似文献   

13.
The importance of the epidermal permeability barrier (EPB) in protecting the mammalian species against harmful UV irradiation, microorganism invasion and water loss is well recognized, as is the role of calcium (Ca(2+)) in keratinocyte differentiation, cell-cell contact and the EPB. In a previous study, we reported that the overexpression of the Ca(2+)-sensing receptor (CaSR) in the undifferentiated basal cells of the epidermis induced a modified epidermal differentiation program including an accelerated EPB formation in transgenic mice, suggesting a role for CaSR signaling in the differentiation of embryonic epidermal cells during development. We now describe the expression profile of claudins (Cldns) and keratin markers in the accelerated EPB formation of K14-CaSR transgenic mice during development as compared to the wild type from E12.5 to newborn stages. Our data show that the transgenic epidermis undergoes an advanced epidermal differentiation program as compared to the wild type as evidenced morphologically as well as by the expression of K14, K1, loricrin, Cldn6, Cldn18 and Cldn11. In addition, we report for the first time the sequential expression of Cldns in epidermal development and describe that the localization of some Cldns change within the epidermis as it matures. Furthermore, we demonstrate that Cldn6 is expressed very early in epidermal morphogenesis, followed by Cldn18, Cldn11 and Cldn1.  相似文献   

14.
Monospecific antibodies to mouse epidermal keratins were generated in rabbits and guinea pigs by injecting synthetic peptides of unique keratin sequences. The sequences were deduced from nucleotide sequences of cDNA clones representing basal (K14) and suprabasal (K1 and K10) cell-specific and hyperproliferative (K6) keratins of both the type-I and type-II subclasses. By applying single-and double-label immunofluorescence analysis, the expression of keratin peptides was analyzed in cultured keratinocytes maintained in the basal or suprabasal cell phenotypes. These cell types were selected by growth in medium containing 0.05 mM Ca2+ (basal cell) or 1.4 mM Ca2+ (suprabasal cell). The cultured basal cells expressed K6 and K14, but less than 1% expressed K1 and K10. Within a few hours after being placed in 1.4 mM Ca2+, K1 expression was observed, and by 24 h, 10%-17% of the cells expressed K1. K10 expression appeared to lag behind K1 expression, with only 5%-10% of cells in 1.4 mM Ca2+ exhibiting K10 immunoreactivity. Double-labeling studies indicated that virtually all K10-positive cells also expressed K1, while only about one-half of the K1-positive cells expressed K10. The treatment of basal cells with retinoic acid at pharmacological concentrations prevented the expression of K1 and K10 when cells were challenged by 1.4 mM Ca2+. Similarly, the introduction of the v-rasH oncogene into basal cells by a defective retroviral vector prevented the expression of suprabasal keratins in 1.4 mM Ca2+ medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Adult mouse epidermis contains up to 11 distinct keratin polypeptides, as resolved by two-dimensional gel electrophoresis. These include both basic (Type II; 67-, 65-, 63-, 62-, and 60-kDa) and acidic (Type I; 61- to 59-, 54-, 52-, 49-, and 48-kDa) keratins that exhibit multiple isoelectric forms. Several, but not all, of these keratins, identified by immunoblotting, were found to be actively synthesized in the skin when assayed in short-term pulse-labeling experiments. When compared to the adult, newborn mouse epidermis expresses fewer keratin subunits. However, greater amounts of keratins associated with differentiated suprabasal cells and stratum corneum, which is more pronounced morphologically in the newborn, were identified. We also observed strain-specific differences in the expression of a Type I acidic keratin. This 61-kDa (pI, approx. 5.3) keratin was produced exclusively by the CF-1 mouse and, based on peptide mapping, appeared to be related to the acidic 59-kDa keratin that was identified in this strain as well as all other mouse strains. The 61-kDa keratin was not expressed in vitamin A-deficient animals, suggesting that its appearance may be related to a retinoid-dependent posttranslational modification. In comparison to keratin expression in vivo, primary mouse keratinocyte monolayer cultures maintained in low Ca2+ (less than 0.08 mM) did not express the terminal differentiation keratins of 67-kDa (basic) or 59-kDa (acidic), although enhanced synthesis of the 60-kDa (basic) and the 52-kDa and 59-kDa (acidic) keratins associated with proliferation were observed. In addition, a subpopulation of nonadherent cells was continuously produced by the primary keratinocyte cultures that expressed the 67-kDa (basic) keratin specific for terminal differentiation. When the keratinocyte cultures were induced to terminally differentiate with Ca2+, the overall pattern of keratin expression was not changed significantly. Taken together, these results provide further evidence for the variable nature of keratin expression in mouse epidermal keratinocytes under different growth conditions.  相似文献   

16.
17.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo.  相似文献   

18.
We report here the isolation and characterization of three antisera, each of which is specific for a single keratin from one of the three different pairs (K1/K10, K14/K5, K16/K6) that are differentially expressed in normal human epidermis and in epidermal diseases of hyperproliferation. We have used these antisera in conjunction with monospecific cRNA probes for epidermal keratin mRNAs to investigate pathways of differentiation in human epidermis and epidermal diseases in vivo and in epidermal cells cultured from normal skin and from squamous cell carcinomas in vitro. Specifically, our results suggest that: (a) the basal-specific keratin mRNAs are down-regulated upon commitment to terminal differentiation, but their encoded proteins are stable, and can be detected throughout the spinous layers; (b) the hyperproliferation-associated keratin mRNAs are expressed at a low level throughout normal epidermis when their encoded proteins are not expressed, but are synthesized at high levels in the suprabasal layers of hyperproliferating epidermis, coincident with the induced expression of the hyperproliferation-associated keratins in these cells; and (c) concomitantly with the induction of the hyperproliferation-associated keratins in the suprabasal layers of the epidermis is the down-regulation of the expression of the terminal differentiation-specific keratins. These data have important implications for our understanding of normal epidermal differentiation and the deviations from this process in the course of epidermal diseases of hyperproliferation.  相似文献   

19.
20.
Three members of p53 family, p53, p63 and p73, can transactivate their specific target genes through a p53 consensus sequence-binding motif which consists with direct repeats of PuPuPuC(T/A)(T/A)GPyPyPy as a whole-site of p53-binding site. p63, an epidermal stem cells marker, can regulate epidermal development and differentiation, but p53 has no similar biological activity. One isoform of p63, TAp63α, can active an epidermal basal cell marker, keratin 14. However, the p53-binding site does not exist as a whole-site in the K14 promoter region, although it contains three putative p53 half-binding sites at -269 to -1 of the K14 promoter. Two of three putative half-sites of the p53-binding site can be bound by p63α by electrophoresis mobility shift assay and DNA affinity purification assay. Only mutation of the p53 half-binding site at -140 to -131, the TAp63α induced K14 promoter activity can be abolished. This half-site was specifically activated by p63, but not by p53. Once we extend this p53 half-site to a whole p53-binding site in K14 promoter, both p53 and p63 expression vectors can activate its activity. Therefore, we propose that the different length of p53-binding site would determinate the gene regulated by different p53 family proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号