首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Administration of dibutyryl-3′,5′-cyclic AMP to rats caused marked, but temporary, decrease of liver glutathione. This decrease appeared to be catalyzed by γ-glutamyltransferase, because it occured concomitantly with induction of the enzyme and increase of cysteine in the liver. The biological half-life of hepatic γ-glutamyltransferase was estimated to be about 3 hours. It is proposed that the physiological levels of glutathione and γ-glutamyltransferase in the liver are controlled by 3′,5′-cyclic AMP, and that liver glutathione may serve as a reservoir of cysteine, which can be mobilized by the transferase.  相似文献   

2.
The influence of thyroid hormone administration on liver glutathione (GSH) extraction in the isolated perfused liver was studied in fed rats for a period of 1–7 days following a single dose of 0.1 mg 3,5,3′-triiodothyronine (T3)/kg. T3 treatment led to an early and transient calorigenic response, as well as an enhancement in liver GSH removal, reaching a maximal effect at 2 days after hormone administration, which was normalized in the 3- to 7-day period studied. Addition of the γ-glutamyltransferase (γ-GT) inhibitor DL-serineborate (4 mM) to the perfusate abolished the increase in the hepatic removal of GSH elicited by T3, and enhanced the sinusoidal concentration of GSH, studied at 2 days after hormone administration. These data support the role of hepatic basolateral γ-GT ectoactivity in the depletion of portally added and liver-derived GSH as an adaptive response to recover GSH levels after reduction by T3-induced oxidative stress.  相似文献   

3.
Glutathione synthetase deficiency results in decreased cellular glutathione content and consequent overproduction of 5-oxoproline. L-serine in borate buffer inhibits γ-glutamyl transpeptidase, the major catabolic enzyme for glutathione. Treatment of glutathione synthetase deficient fibroblasts with 40mM serine and borate for 24 hours produced more than a 2-fold increase in cellular glutathione content. L-serine alone led to a smaller increase in glutathione level, and borate alone was without effect. On exposure to serine and borate, 5-oxoproline formation from L-glutamate was decreased to normal levels in glutathione synthetase deficient fibroblasts, presumably secondary to feedback inhibition of γ-glutamylcysteine synthetase by the increased intracellular glutathione concentration. Cellular free amino acid content was generally unaffected by such exposure although increases were observed in serine and phosphoserine. This model system suggests that γ-glutamyl transpeptidase inhibition may be a rational approach to alleviating the effects of glutathione synthetase deficiency.  相似文献   

4.
Sulfhydryl oxidase (glutathione-oxidizing activity) is closely associated with γ-glutamyltransferase (γ-glutamyl transpeptidase) in skim milk membranes. Similar close association of the two enzymatic activities in kidney membranes has led to the recent proposal that glutathione-oxidizing activity can be attributed to the action of γ-glutamyltransferase, itself, in generating cysteinylglycine which, in turn, catalyzes sulfhydryl group oxidation (O. W. Griffith and S. S. Tate, 1980, J. Biol. Chem.255, 5011–5014). However, a previously published procedure for the isolation of highly purified sulfhydryl oxidase from skim milk membranes (V. G. Janolino and H. E. Swaisgood, 1975, J. Biol. Chem.250, 2532–2538) leads to the effective separation of the two activities. Quantitative chromatographic analyses of GSH, GSSG, and Glu levels revealed that the highly purified sulfhydryl oxidase preparation catalyzes the direct oxidation of GSH to GSSG without detectable cleavage of the γ-glutamyl peptide bond. These results were confirmed by monitoring the time course of substrate disappearance and product formation using high-performance liquid chromatography. Conversely, a supernatant fraction enriched in γ-glutamyltransferase activity displayed no sulfhydryl group-oxidizing activity. 6-Diazo-5-oxo-l-norleucine selectively inhibited the transferase in crude preparations containing both sulfhydryl oxidase and γ-glutamyltransferase. It is concluded that sulfhydryl oxidase and γ-glutamyltransferase activities are distinct and separable.  相似文献   

5.
《Analytical biochemistry》1986,152(2):314-318
A method for the analysis of low levels of the enzyme γ-glutamyltransferase in biological samples by high-performance liquid chromatography with electrochemical detection is described. A γ-glutamyl moiety from glutathione is transferred by the enzyme to glycylglycine to produce a tripeptide which is assayed directly after a purification step using octadecylsilica. Confirmation of the method is by use of the inhibitor AT-125. The method is used to measure the level of enzyme activity in rodent tissues and in cultured cells.  相似文献   

6.
Metabolic acidosis results in an adaptation in renal γ-glutamyltransferase (γ-GT) and a doubling of hippurate excretion. The greater rate of γ-glutamohydroxamate, γ-GHA, formation from L-glutamine, but not from glutathione, by acidotic kidney homogenates suggest an increased γ-glutamyl-enzyme complex formation and a preference for glutamine as the γ-glutamyl donor in acidosis. Hippurate added invitro to cortical homogenates or microsomes mimics the affect of acidosis upon γ-GHA formation from glutamine. Acid extracts of urine stimulated ammonia formation from glutamine using cortical microsomes in agreement with the measured hippurate levels. Administering an exogenous hippurate load to fasting nonacidotic rats doubled ammonia excretion and the rate of γ-GHA formation by cortical homogenates. These results are consistent with the acidosis induced adaptation in renal γ-GT governed by hippurate.  相似文献   

7.
Occurrence of a novel γ-glutamyltransferase responsible for the formation of γ-L-glutamyl-D-alanine was demonstrated in pea seedlings, and the enzyme was purified 600-fold. The enzyme preparation catalyzed the transfer of the γ-glutamyl moiety of L-glutamine and other γ-glutamyl compounds to D-amino acids. In the formation of γ-L-glutamyl peptides of D-amino acids, L-glutamine served as the most effective γ-glutamyl donor and D-alanine acted as a highly-specific acceptor. The maximum activity of the γ-glutamyl transfer reaction between L-glutamine and D-alanine was observed at pH 9.5 and the apparent Km values for these amino acids were estimated to be 2.0 and 2.9mM, respectively. This unique γ-glutamyltransferase activity was always accompanied by the catalytic activities of the known γ-glutamyltransferases during the purification procedure.  相似文献   

8.
A radioimmunoassay for sulfhydryl oxidase, a membrane enzyme, was developed using antibodies raised to the bovine milk enzyme which had been purified by transient covalent affinity chromatography on a cysteinylsuccinamidopropyl-glass matrix. Bovine milk sulfhydryl oxidase and bovine kidney sulfhydryl oxidase (“glutathione oxidase”) appear to be immunologically identical as evidenced by parallel responses in radioimmunoassays. Antibodies raised to the purified milk sulfhydryl oxidase can immunoprecipitate glutathione oxidase activity, but not γ-glutamyltransferase (“transpeptidase”) activity, from bovine kidney preparations.  相似文献   

9.
A transfer of the γ-glutamyl moiety of S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]glutathione (I), an adduct of glutathione and l-histidine metabolite urocanic acid, has been investigated by using γ-glutamyltransferase preparation from bovine kidney. When an equimolar mixture of two diastereomers of compound I in a phosphate buffer was allowed to react with glycylglycine in the presence of the transferase, two diastereomers of N-{S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-l-cysteinyl}glycine (II) were formed in the same yield with each other and this was accompanied by a formation of γ-glutamylglycylglycine. Kinetics of compound I with the transferase indicated high affinity between the two materials, while the maximal reaction velocity of the γ-glutamyl transfer was low. Effects of compound I in vitro on the transfer of γ-glutamyl moiety of γ-glutamyl-p-nitroanilide to glycylglycine with the transferase were also studied, and the results indicated that the transfer was suppressed by compound I based on its competitive and non-competitive inhibitions. These results suggest that little variation in reactivities of two diastereomers of compound I as the substrate is given by the difference in stereomerism of their asymmetric carbon atoms and that inhibitory effects of compound I on the catalytic action of the transferase is of sufficient physiological importance to decrease the degradation of natural γ-glutamyl compounds, such as glutathione and its analogs.  相似文献   

10.
γ-Glutamyltransferase activity was detected in the plasma membrane of the highly differentiated hepatoma cell line Fao, (0.93 mU/mg cell protein). Dexamethasone (1 μM) provoked a 2–3-fold increase in the activity of the enzyme in the presence of fetal calf serum. Maximal induction occurred 48–72 h after addition of the glucocorticoid to the cell culture medium. The hormonal specificity was demonstrated by the relative potencies of several glucocorticoids and sex steroids: hydrocortisone and corticosterone increased γ-glutamyltransferase activity while tetrahydrocorticosterone and all sex steroids tested were ineffective. The effect of dexamethasone on γ-glutamyltransferase activity was specific since the activities of several other plasma membrane enzymes were not modified. The mechanism of the dexamethasone-induced increase in γ-glutamyltransferase activity was neither by modification of the affinity of the enzyme for its substrates nor by alteration of the subcellular distribution of the enzyme. This increase was prevented by cycloheximide and actinomycin D. The data presented are consistent with a specific glucocorticoid receptor-mediated induction of γ-glutamyltransferase activity in Fao cells. The kinetic parameters of the induction process by glucocorticoids are very similar to those found in adult rat liver. These results suggest that the Fao cell line is a very convenient system for the study of the molecular mechanisms of glucocorticoid effects on differentiated cells.  相似文献   

11.
Alcohol metabolism causes cellular damage by changing the redox status of cells. In this study, we investigated the relationship between genetic markers in genes coding for enzymes involved in cellular redox stabilization and their potential role in the clinical outcome of acute alcohol-induced hepatitis. Study subjects comprised 60 patients with acute alcohol-induced hepatitis. The control group consisted of 122 healthy non-related individuals. Eight genetic markers of the genes UGT1A1, GSTA1, GSTP1, NAT2, GSTT1 and GSTM1 were genotyped. GSTT1 null genotype was identified as a risk allele for alcohol-toxic hepatitis progression (OR 2.146, P=0.013). It was also found to correlate negatively with the level of prothrombin (β= ?11.05, P=0.037) and positively with hyaluronic acid (β=170.4, P=0.014). NAT2 gene alleles rs1799929 and rs1799930 showed opposing associations with the activity of the biochemical markers γ-glutamyltransferase and alkaline phosphatase; rs1799929 was negatively correlated with γ-glutamyltransferase (β=?261.3, P=0.018) and alkaline phosphatase (β= ?270.5, P=0.032), whereas rs1799930 was positively correlated with Γ-glutamyltransferase (β=325.8, P=0.011) and alkaline phosphatase (β=374.8, P=0.011). Enzymes of the glutathione S-transferase family and NAT2 enzyme play an important role in the detoxification process in the liver and demonstrate an impact on the clinical outcome of acute alcohol-induced hepatitis.  相似文献   

12.
A γ-glutamyltransferase activity is found in the human red blood cell membrane.Membrane isolation was carried out according to the method of Dodge et al. (Dodge, J. T., Mitchell, C. and Hanahan, J. (1963) Arch. Biochem. Biophys. 100, 119–130) (modified) and proteins were solubilized either with 1 % sodium deoxycholate or 5 mM EDTA or 10 mM of its disodium salt, under various conditions of time and temperature. The γ-glutamyltransferase activity of the membrane preparations was investigated using two substrates, γ-l-glutamyl-p-nitroanilide and γ-lglutamyl-α-naphthylamide.The specific enzymatic activities of the various preparations, expressed in munits per mg of protein, were found to have similar values under similar technical conditions. The chelating agents seem to allow a more specific isolation than the detergent.The presence of a γ-glutamyltransferase activity in the erythrocyte membrane is discussed in relation to the membrane association of this enzyme in other tissues.  相似文献   

13.
The mechanism of the stimulatory effect of glutathione on proteolysis in mouse kidney lysosomes and a lack of an effect in lysomes from the liver was investigated. The stimulation in kidney lysosomes was inhibited by serine plus borate, a reversible inhibitor of γ-glutamyl transpeptidase. Treatment of mouse kidney lysosome suspensions with l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), an irreversible inhibitor of the transpeptidase, also inhibited the effect of glutathione, but this inhibition was completely relieved by washing and addition of freshly prepated kidney membranes or purified γ-glutamyl transpeptidase to the incubation mixtures. Cysteinyl-glycine, a product of the action of γ-glutamyl transpeptidase, stimulated proteolysis in acivicin-inhibited kidney lysosome preparations similarly to glutathione, and cysteine had no effect at equivalent concentrations. Glutathione also stimulated proteolysis in liver lysosomes in the presence of washed kidney membranes or γ-glutamyl transpeptidase, but the effect was similar to that produced by equivalent concentrations of cysteine. These results suggest that the stimulatory effect of glutathione was mediated by the action of γ-glutamyl transpeptidase present in contaminating cell membrane fragments in the lysosome preparations, and that glutathione does not take part in intralysosomal proteolysis. However, the possibility that cysteinyl-glycine is a physiological intralysosomal disulfide reductant in kidney lysosomes has not been excluded.  相似文献   

14.
We analyzed relationships of hepatic and pancreatic biomarkers with the cholestatic syndrome and tumor stage in exocrine pancreatic cancer (N = 183). Information on laboratory tests and on signs and symptoms was obtained from medical records and patient interviews. Bilirubin, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT) and alkaline phosphatase were lower in tumor stage IV. The association was due to the relationship between cholestatic syndrome and earlier presentation of patients. There was no association between hepatic biomarkers and stage when adjusting by cholestatic syndrome. Relationships of hepatic and pancreatic biomarkers with pancreatic symptoms and tumor stage must be controlled in “-omics” and other studies using biomarkers.  相似文献   

15.
We analyzed relationships of hepatic and pancreatic biomarkers with the cholestatic syndrome and tumor stage in exocrine pancreatic cancer (N = 183). Information on laboratory tests and on signs and symptoms was obtained from medical records and patient interviews. Bilirubin, aspartate aminotransferase (AST), γ-glutamyltransferase (GGT) and alkaline phosphatase were lower in tumor stage IV. The association was due to the relationship between cholestatic syndrome and earlier presentation of patients. There was no association between hepatic biomarkers and stage when adjusting by cholestatic syndrome. Relationships of hepatic and pancreatic biomarkers with pancreatic symptoms and tumor stage must be controlled in "-omics" and other studies using biomarkers.  相似文献   

16.
γ-Glutamyl transpeptidase (EC 2.3.2.2) converts leukotriene C to leukotriene D by removal of a glutamyl residue. The Michaelis constant for leukotriene C4 hydrolysis was found to be 5.6 μM. Under the same conditions the Km value for hydrolysis of reduced glutathione was 5.7 μM. This suggests that leukotriene C4 and glutathione may be competing substrates for γ-glutamyl transpeptidase under physiological conditions. The apparent KI for inhibition of leukotriene C4 hydrolysis by equimolar amounts of L-serine and sodium borate was 0.8 mM.  相似文献   

17.
The importance of γ-glutamyl transpeptidase, the key enzyme of the γ-glutamyl cycle and of thiols for the uptake of amino acids into rat pancreatic islets was investigated. Both serine–borate, an inhibitor of γ-glutamy transpeptidase, and serine which does not inhibit this enzyme, but probabaly is a competitive inhibitor of amino acid uptake, inhibited of glutamine. The inhibitory effect of serine-borate was not greater than that of serine alone. The uptake of glutamine was not affected by either GSH (reduced glutathione) or diamide (a thiol oxidant). Niether substances affected the uptake of leucine. The results indicate that the uptake of glutamine by rat pancreatic islets is not dependent on the functioning of γ-glutamyl transpeptidase and that thiols are not important for the uptake of the amino acids glutamine and leucine.  相似文献   

18.
T C Welbourne  P D Dass 《Life sciences》1981,28(11):1219-1224
Acidosis induces an adaptation in renal γ-glutamyltransferase activity. The mechanism responsible for this adaptation was studied in isolated kidneys from control and chronically acidotic rats perfused with either γ-glutamyl-p-nitroanilide or D-glutamine. The results clearly establish that acidosis increased the utilization of both γ-glutamyl donors and that the adaptation occurs on both the luminal (urine) and antiluminal (blood) border of tubule cells. Acidotic rat kidneys exhibited an apparent Vmax for γ-glutamyl-p-nitroanilide similar to that of the control while the apparent Km was significantly reduced consistent with an increased affinity of the enzyme for the substrate in acidosis.  相似文献   

19.
In many organisms, γ-glutamylmethylamide is a significant amino acid constituent. In this research, a novel method of γ-glutamylmethylamide synthesis is presented. The synthesis of γ-glutamylmethylamide was catalysed by immobilized recombinant γ-glutamyltranspeptidase and used L-glutamylhydrazine as an economical substrate. The optimal enzymes and γ-glutamyltranspeptidase reaction conditions for the production of γ-glutamylmethylamide were 200?mM L-glutamylhydrazine, 1?M methylamine, and 0.1?g/ml immobilized γ-glutamyltranspeptidase cells at pH 10 and 37?°C for 10?h. The immobilized γ-glutamyltranspeptidase cells were used for 10 reactions, and the average conversion ratio from L-glutamylhydrazine to γ-glutamylmethylamide reached 93.2%. The activity of immobilized recombinant γ-glutamyltransferase was not inhibited by 200?mM L-glutamylhydrazine. The immobilized γ-glutamyltranspeptidase cells exhibited favourable operational stability.  相似文献   

20.
Gamma-Glutamyl-p-nitroanilide (γ-GpNA) utilization was studied using the isolated rat kidney perfused with 1.5 mM γ-glutamyl-p-nitroanilide and 8 mM glycylglycine (glygly). In the absence of glygly, autotransfer products, γ-glu-γ-glu-p-NA appeared in the perfusate while glutamate, the hydrolytic product, appeats in the urine. In the presence of glygly, p-nitroaniline (p-NA) formation was stimulated 3-fold with the appearance of γ-gluglygly as the major product in both the perfusate and urine. Under conditions of single pass perfusion, 89 percent of the γ-glutamyl-p-nitroanilide utilization occurs on the antilumenal border and only 11 percent on the lumenal border; ureter ligation reduced glomerular filtration 90 percent but does not significantly reduce utilization. However, reducing the perfusate flow rate of the antilumenal side to that of the lumenal results in a utilization rate which is approximately one-third that of the lumenal, suggesting that the lumenal border enzyme is at least 3 times in excess of the antilumenal border enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号