首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

2.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

3.
The recently discovered photoreceptor proteins containing BLUF (sensor of blue light using FAD) domains mediate physiological responses to blue light in bacteria and euglena. In BLUF domains, blue light activates the flavin chromophore yielding a signaling state characterized by a ∼10 nm red-shifted absorption. We developed molecular models for the dark and light states of the BLUF domain of the Rhodobacter sphaeroides AppA protein, which are based on the crystal structures and quantum-mechanical simulations. According to these models, photon absorption by the flavin results in a tautomerization and 180° rotation of the Gln side chain that interacts with the flavin cofactor. This chemical modification of the Gln residue induces alterations in the hydrogen bond network in the core of the photoreceptor domain, which were observed in numerous spectroscopic experiments. The calculated electronic transition energies and vibrational frequencies of the proposed dark and light states are consistent with the optical and IR spectral changes observed during the photocycle. Light-induced isomerization of an amino acid residue instead of a chromophore represents a feature that has not been described previously in photoreceptors.  相似文献   

4.
We have studied the kinetics of the blue light-induced branching reaction in the photocycle of photoactive yellow protein (PYP) from Ectothiorhodospira halophila, by nanosecond time-resolved UV/Vis spectroscopy. As compared to the parallel dark recovery reaction of the presumed blue-shifted signaling state pB, the light-induced branching reaction showed a 1000-fold higher rate. In addition, a new intermediate was detected in this branching pathway, which, compared to pB, showed a larger extinction coefficient and a blue-shifted absorption maximum. This substantiates the conclusion that isomerization of the chromophore is the rate-controlling step in the thermal photocycle reactions of PYP and implies that absorption of a blue photon leads to cis-->trans isomerization of the 4-hydroxy-cinnamyl chromophore of PYP in its pB state.  相似文献   

5.
We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and proton transfer from the protein to flavin result in rotation of a conserved glutamine that switches the hydrogen bond network. Femtosecond infrared spectroscopy has shown that in photoactive yellow protein (PYP), breaking of a hydrogen bond that connects the p-coumaric acid chromophore to the backbone is crucial for trans-cis isomerization and successful entry into the photocycle. Furthermore, isomerization reactions of phycocyanobilin in phytochrome and retinal in the rhodopsins have been revealed in detail through application of femtosecond infrared and femtosecond-stimulated Raman spectroscopy.  相似文献   

6.
Photoactive yellow protein (PYP) is a bacterial blue light sensor that induces Halorhodospira halophila to swim away from intense blue light. Light absorption by PYP's intrinsic chromophore, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. Here we describe the initial structural changes of the chromophore and its nearby amino acids, using visible pump/mid-infrared probe spectroscopy. Upon photoexcitation, the trans bands of the chromophore are bleached, and shifts of the phenol ring bands occur. The latter are ascribed to charge translocation, which probably plays an essential role in driving the trans to cis isomerization process. We conclude that breaking of the hydrogen bond of the chromophore's C=O group with amino acid Cys69 and formation of a stable cis ground state occur in approximately 2 ps. Dynamic changes also include rearrangements of the hydrogen-bonding network of the amino acids around the chromophore. Relaxation of the coumaryl tail of the chromophore occurs in 0.9-1 ns, which event we identify with the I(0) to I(1) transition observed in visible spectroscopy.  相似文献   

7.
Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP.  相似文献   

8.
The photocycle intermediates of photoactive yellow protein (PYP) were characterized by low-temperature Fourier transform infrared spectroscopy. The difference FTIR spectra of PYP(B), PYP(H), PYP(L), and PYP(M) minus PYP were measured under the irradiation condition determined by UV-visible spectroscopy. Although the chromophore bands of PYP(B) were weak, intense sharp bands complementary to the 1163-cm(-1) band of PYP, which show the chromophore is deprotonated, were observed at 1168-1169 cm(-1) for PYP(H) and PYP(L), indicating that the proton at Glu46 is not transferred before formation of PYP(M). Free trans-p-coumaric acid had a 1294-cm(-1) band, which was shifted to 1288 cm(-1) in the cis form. All the difference FTIR spectra obtained had the pair of bands corresponding to them, indicating that all the intermediates have the chromophore in the cis configuration. The characteristic vibrational modes at 1020-960 cm(-1) distinguished the intermediates. Because these modes were shifted by deuterium-labeling at the ethylene bond of the chromophore while labeling at the phenol part had no effect, they were attributed to the ethylene bond region. Hence, structural differences among the intermediates are present in this region. Bands at about 1730 cm(-1), which show that Glu46 is protonated, were observed for all intermediates except for PYP(M). Because the frequency of this mode was constant in PYP(B), PYP(H), and PYP(L), the environment of Glu46 is conserved in these intermediates. The photocycle of PYP would therefore proceed by changing the structure of the twisted ethylene bond of the chromophore.  相似文献   

9.
To understand how proteins translate the energy of sunlight into defined conformational changes, we have measured the photocycle reactions of photoactive yellow protein (PYP) using time-resolved step scan Fourier transform infrared (FTIR) spectroscopy. Global fit analysis yielded the same apparent time constants for the reactions of the chromophore, the protonation changes of protein side chains and the protein backbone motions, indicating that the light cycle reactions are synchronized. Changes in absorbance indicate that there are at least four intermediates (I1, I1', I2, I2'). In the intermediate I1, the dark-state hydrogen bond from Glu 46 to the aromatic ring of the p-hydroxycinnamoyl chromophore is preserved, implying that the chromophore undergoes trans to cis isomerization by flipping, not the aromatic ring, but the thioester linkage with the protein. This excludes an I1 structural model proposed on the basis of time resolved Laue crystallography, but does agree with the cryotrapped structure of an I1 precursor.  相似文献   

10.
In the bacterial photoreceptor photoactive yellow protein (PYP), absorption of blue light by its chromophore leads to a conformational change in the protein associated with differential signaling activity, as it executes a reversible photocycle. Time-resolved Laue crystallography allows structural snapshots (as short as 150 ps) of high crystallographic resolution (approximately 1.6 A) to be taken of a protein as it functions. Here, we analyze by singular value decomposition a comprehensive time-resolved crystallographic data set of the E46Q mutant of PYP throughout the photocycle spanning 10 ns-100 ms. We identify and refine the structures of five distinct intermediates and provide a plausible chemical kinetic mechanism for their inter conversion. A clear structural progression is visible in these intermediates, in which a signal generated at the chromophore propagates through a distinct structural pathway of conserved residues and results in structural changes near the N terminus, over 20 A distant from the chromophore.  相似文献   

11.
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C4-C7 single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C4-C7 single-bond rotation in PYP is not an alternative to C7=C8 double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore.  相似文献   

12.
The bacterial photoreceptor protein photoactive yellow protein (PYP) covalently binds the chromophore 4-hydroxy coumaric acid, tuning (spectral) characteristics of this cofactor. Here, we study this binding and tuning using a combination of pointmutations and chromophore analogs. In all photosensor proteins studied to date the covalent linkage of the chromophore to the apoprotein is dispensable for light-induced catalytic activation. We analyzed the functional importance of the covalent linkage using an isosteric chromophore-protein variant in which the cysteine is replaced by a glycine residue and the chromophore by thiomethyl-p-coumaric acid (TMpCA). The model compound TMpCA is shown to weakly complex with the C69G protein. This non-covalent binding results in considerable tuning of both the pKa and the color of the chromophore. The photoactivity of this system, however, was strongly impaired, making PYP the first known photosensor protein in which the covalent linkage of the chromophore is of paramount importance for the functional activity of the protein in vitro. We also studied the influence of chromophore analogs on the color and photocycle of PYP, not only in WT, but especially in the E46Q mutant, to test if effects from both chromophore and protein modifications are additive. When the E46Q protein binds the sinapinic acid chromophore, the color of the protein is effectively changed from yellow to orange. The altered charge distribution in this protein also results in a changed pKa value for chromophore protonation, and a strongly impaired photocycle. Both findings extend our knowledge of the photochemistry of PYP for signal generation.  相似文献   

13.
PixD/Slr1694 from the cyanobacterium Synechocystis sp. PCC6803 is a member of a new class of flavin-containing blue-light sensory proteins containing a BLUF (blue light using flavin) domain. The photocycle reaction mechanism of BLUF is unique because only small structural changes of a bound chromophore are accompanied by a few hydrogen bond rearrangements in the chromophore-binding site. Here, we show that in PixD, Met93, the residue conserved in all BLUF domains, is crucial for light-dependent signal transduction. Specifically, the light-insensitive M93A mutant of PixD revealed biochemical and physiological activities compatible with those of the light-adapted wild-type PixD. However, the W91A mutant of PixD retained light sensitivity and biological function, although the corresponding mutant of another BLUF protein, AppA, has been reported to be locked in the light signaling state. These observations suggest that the pathway through which the light signal is transformed into apoprotein structural changes has been modified in BLUF proteins for their respective functions.  相似文献   

14.
15.
16.
The flavoprotein AppA is a blue-light photoreceptor that functions as an antirepressor of photosynthesis gene expression in the purple bacterium Rhodobacter sphaeroides. Heterologous expression studies show that FAD binds to a 156 amino acid N-terminal domain of AppA and that this domain is itself photoactive. A pulse of white light causes FAD absorption to be red shifted in a biphasic process with a fast phase occurring in <1 micros and a slow phase occurring at approximately 5 ms. The absorbance shift was spontaneously restored over a 30 min period, also in a biphasic process as assayed by fluorescence quenching and electronic absorption analyses. Site-directed replacement of Tyr21 with Leu or Phe abolished the photochemical reaction implicating involvement of Tyr21 in the photocycle. Nuclear magnetic resonance analysis of wild-type and mutant proteins also indicates that Tyr21 forms pi-pi stacking interactions with the isoalloxazine ring of FAD. We propose that photochemical excitation of the flavin results in strengthening of a hydrogen bond between the flavin and Tyr 21 leading to a stable local conformational change in AppA.  相似文献   

17.
Masuda S  Hasegawa K  Ishii A  Ono TA 《Biochemistry》2004,43(18):5304-5313
The sensor of blue-light using FAD (BLUF) domain is the flavin-binding fold categorized to a new class of blue-light sensing domain found in AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis, but little is known concerning the mechanism of blue-light perception. An open reading frame slr1694 in a cyanobacterium Synechocystis sp. PCC6803 encodes a protein possessing the BLUF domain. Here, a full-length Slr1694 protein retaining FAD was expressed and purified and found to be present as an oligomeric form (trimer or tetramer). Using the purified Slr1694, spectroscopic properties of Slr1694 were characterized. Slr1694 was found to show the same red-shift of flavin absorption and quenching of flavin fluorescence by illumination as those of AppA. These changes reversed in the dark although the rate of dark state regeneration was much faster in Slr1694 than AppA, indicating that Slr1694 is a blue-light receptor based on BLUF with the similar photocycle to that of AppA. The dark decay in D(2)O was nearly four times slower than in H(2)O. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was applied to examine the light-induced structure change of a chromophore and apo-protein with deuteration and universal (13)C and (15)N isotope labeling. The FTIR results indicate that light excitation induced distinct changes in the amide I modes of peptide backbone but relatively limited changes in flavin chromophore. Light excitation predominantly weakened the C(4)=O and C(2)=O bonding and strengthened the N1C10a and/or C4aN5 bonding, indicating formational changes of the isoalloxazine ring II and III of FAD but little formational change in the isoalloxazine ring I. The photocycle of the BLUF is unique in the sense that light excitation leads to the structural rearrangements of the protein moieties coupled with a minimum formational change of the chromophore.  相似文献   

18.
Anderson S  Dragnea V  Masuda S  Ybe J  Moffat K  Bauer C 《Biochemistry》2005,44(22):7998-8005
The flavin-binding BLUF domain of AppA represents a new class of blue light photoreceptors that are present in a number of bacterial and algal species. The dark state X-ray structure of this domain was determined at 2.3 A resolution. The domain demonstrates a new function for the common ferredoxin-like fold; two long alpha-helices flank the flavin, which is bound with its isoalloxazine ring perpendicular to a five-stranded beta-sheet. The hydrogen bond network and the overall protein topology of the BLUF domain (but not its sequence) bear some resemblance to LOV domains, a subset of PAS domains widely involved in signaling. Nearly all residues conserved in BLUF domains surround the flavin chromophore, many of which are involved in an intricate hydrogen bond network. Photoactivation may induce a rearrangement in this network via reorientation of the Gln63 side chain to form a new hydrogen bond to the flavin O4 position. This shift would also break a hydrogen bond to the Trp104 side chain, which may be critical in induction of global structural change in AppA.  相似文献   

19.
We report a comparative study of the isomerization reaction in native and denatured photoactive yellow protein (PYP) and in various chromophore analogues in their trans deprotonated form. The excited-state relaxation dynamics was followed by subpicosecond transient absorption and gain spectroscopy. The free p-hydroxycinnamate (pCA(2-)) and its amide analogue (pCM(-)) are found to display a quite different transient spectroscopy from that of PYP. The excited-state deactivation leads to the formation of the ground-state cis isomer without any detectable intermediate with a mechanism comparable to trans-stilbene photoisomerization. On the contrary, the early stage of the excited-state deactivation of the free thiophenyl-p-hydroxycinnamate (pCT(-)) and of the denatured PYP is similar to that of the native protein. It involves the formation of an intermediate absorbing in the spectral region located between the bleaching and gain bands in less than 2 ps. However, in these two cases, the formation of the cis isomer has not been proved yet. This difference with pCA(-) and pCM(-) might result from the fact that, in the thioester substituted chromophore, simultaneous population of two quasi-degenerate excited states occurs upon excitation. This comparative study highlights the determining role of the chromophore structure and of its intrinsic properties in the primary molecular events in native PYP.  相似文献   

20.
Photoactive yellow protein (PYP) is a prototype of the PAS domain superfamily of signaling proteins. The signaling process is coupled to a three-state photocycle. After the photoinduced trans-cis isomerization of the chromophore, 4-hydroxycinnamic acid (pCA), an early intermediate (pR) is formed, which proceeds to a second intermediate state (pB) on a sub-millisecond time scale. The signaling process is thought to be connected to the conformational changes upon the formation of pB and its recovery to the ground state (pG), but the exact signaling mechanism is not known. Experimental studies of PYP by solution NMR and X-ray crystallography suggest a very flexible protein backbone in the ground as well as in the signaling state. The relaxation from the pR to the pB state is accompanied by the protonation of the chromophore's phenoxyl group. This was found to be of crucial importance for the relaxation process. With the goal of gaining a better understanding of these experimental observations on an atomistic level, we performed five MD simulations on the three different states of PYP: a 1 ns simulation of PYP in its ground state [pG(MD)], a 1 ns simulation of the pR state [pR(MD)], a 2 ns simulation of the pR state with the chromophore protonated (pRprot), a 2 ns simulation of the pR state with Glu46 exchanged by Gln (pRGln) and a 2 ns simulation of PYP in its signaling state [pB(MD)]. Comparison of the pG simulation results with X-ray and NMR data, and with the results obtained for the pB simulation, confirmed the experimental observations of a rather flexible protein backbone and conformational changes during the recovery of the pG from the pB state. The conformational changes in the region around the chromophore pocket in the pR state were found to be crucially dependent on the strength of the Glu46-pCA hydrogen bond, which restricts the mobility of the chromophore in its unprotonated form considerably. Both the mutation of Glu46 with Gln and the protonation of the chromophore weaken this hydrogen bond, leading to an increased mobility of pCA and large structural changes in its surroundings. These changes, however, differ considerably during the pRGln and pRprot simulations, providing an atomistic explanation for the enhancement of the rate constant in the Gln46 mutant. Electronic supplementary material to this article is available at and is accessible for athorized users. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号