首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Antigen-independent selection of intracellular stable antibody frameworks   总被引:1,自引:0,他引:1  
The intracellular expression of highly specific antibody fragments ("intrabodies") in eukaryotes has a great potential in functional genomics and therapeutics. However, since the intracellular reducing environment prevents formation of the conserved intrachain disulfide bonds, most antibodies do not fold properly and are therefore inactive inside cells. The few antibodies that have been found to function in an intracellular environment and that have been characterized for their biophysical properties have generally shown a high degree of stability and solubility. Thus, for intracellular expression and application, very stable antibody frameworks are needed that can correctly fold even in the absence of disulfide bonds and that do not aggregate. Here, we present and discuss a novel method, named "Quality Control," which allows selection of stable and soluble antibody frameworks in vivo without the requirement or knowledge of antigens. This system is based on the expression of single-chain antibody fragments (scFvs) fused to a selectable marker that can control gene expression and cell growth. The activity of such a selectable marker fused to various scFvs that have been biophysically characterized correlated with the solubility and stability of the scFv moieties. This antigen-independent intrabody selection system was applied to screen scFv libraries for identifying stable and soluble frameworks, which subsequently served as acceptor backbones to construct intrabody libraries by randomization of hypervariable loops.  相似文献   

2.
Many therapeutic targets are intracellular proteins and molecules designed to interact with them must effectively bind to their target inside the cell. Intracellular antibodies (intrabodies) recognise and bind to proteins in cells and various methods have been developed to produce such molecules. Intracellular antibody capture (IAC) is based on a genetic screening approach and is a facile methodology with which effective intracellular antibodies can be obtained. During the development of the IAC technology, consensus immunoglobulin variable frameworks were identified which can form the basis of intrabody libraries for direct screening. In this paper, we describe the de novo synthesis of intrabody libraries based on the IAC consensus sequence. The procedure comprises in vitro production of a single antibody gene fragment from oligonucleotides and diversification of CDRs of the immunoglobulin variable domain by mutagenic PCR. Completely de novo intrabody libraries can be rapidly generated in vitro by these approaches. As an example, a single immunoglobulin VH domain intrabody library was screened directly in yeast with an oncogenic BCR-ABL antigen bait and distinct antigen binders were isolated illustrating the functional utility of the library. This second generation IAC approach (IAC2) has many practical advantages, in particular the ability to isolate intrabodies by direct genetic selection, which obviates the need for in vitro production of antigen for pre-selection of antibody fragments.  相似文献   

3.
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.  相似文献   

4.
The expression of intracellular antibodies (intrabodies) in eukaryotic cells has provided a powerful tool to manipulate microbial and cellular signaling pathways in a highly precise manner. However, there have been several technical issues that have restricted their more widespread use. In particular, single-chain antibodies (sFv) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use sFv-phage libraries as a source of intrabodies unless a pre-selection step to identify these rare sFvs from natural libraries or libraries of engineering sFvs that could fold properly in the absence of disulfide bonds were used. Here, we investigated whether target specific sFvs that are isolated from a 15 billion member non-immune human sFv-phage display library could be directly screened in pools as intrabodies without prior knowledge of their individual identity or purity within pools of antigen-specific sFvs. As the target, we used a synthetic transformation effector site 1 (TES1) polypeptide comprising the membrane-most proximal 34 amino acid residues of the carboxy-terminal cytoplasmic tail of the oncogenic latent membrane protein 1 (LMP1) of Epstein Barr virus, which serves as a docking site for adapter proteins of the tumor necrosis factor (TNF) receptor (TNFR)-associated factor (TRAF) family. Anti-TES1 sFvs, initially identified by phage ELISA screens, were grouped into pools according to the absorbance reading of the antigen-specific phage ELISA assays and then transferred as pools into eukaryotic expression vectors and expressed as cytoplasmic intrabodies. Using the pooling strategy, there was no loss of individual anti-TES1 sFvs in the transfer from prokaryotic to eukaryotic expression vectors. In addition, the initial assignments into sFv pools based on phage ELISA readings allowed the segregation of individual anti-TES1 sFvs into discrete or minimally overlapping intrabody pools. Further assessment of the biological activity of the anti-TES1 intrabody pools demonstrated that they were all able to selectively block F-LMP1-induced NFkappaB activity that was mediated through the TES1-site and to bind LMP1 protein with high efficiency. This direct phage to intrabody screening (DPIS) strategy should allow investigators to bypass much of the in vitro sFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic sFv phage libraries already in existence to identify intrabodies that are active in vivo.  相似文献   

5.
Intrabodies are recombinantly expressed intracellular antibody fragments that can be used to specifically bind and inhibit the function of cellular proteins of interest. Intrabodies can be targeted to various cell compartments by attaching an appropriate localization peptide sequence to them. An efficient strategy with a high success rate is to anchor intrabodies in the endoplasmatic reticulum where they can inhibit transitory target proteins by binding and preventing them to reach their site of action. Intrabodies can be assembled from antibody gene fragments from various sources into dedicated expression vectors. Conventionally, antibody cDNA sequences are derived from selected hybridoma cell clones that express antibodies with the desired specificity. Alternatively, appropriate clones can be isolated by affinity selection from an antibody in vitro display library. Here an evaluation of endoplasmatic reticulum targeted intrabodies with respect to other knockdown approaches is given and the characteristics of various intrabody expression vectors are discussed. A step by step protocol is provided that was repeatedly used to construct intrabodies derived from diverse antibody isotypes producing hybridoma cell clones. The inactivation of the cell surface receptor neural cell adhesion molecule (NCAM) by a highly efficacious novel endoplasmatic reticulum-anchored intrabody is demonstrated.  相似文献   

6.
The ability of intracellular antibodies (intrabodies) to block the function of a target protein can be dependent on the stability of the single-chain antibody (sFv) when expressed in the intracellular environment. Low-affinity sFvs capable of reaching high steady-state levels can be more effective modulators of target proteins than high-affinity, unstable sFvs. In an effort to enhance the intracellular stability of sFvs when expressed as intrabodies, we have generated novel sFv-Fc fusion intrabodies. Fusion of the native sFv sequence with the entire heavy chain constant region fragment of IgG results in decreased turnover of the intrabody and enhanced steady-state accumulation of sFv-Fc protein, while maintaining the ability to target intrabody expression to sub-cellular compartments. Here, we describe the rationale and design for this strategy using two anti-cyclin E sFvs constructed for use as intrabodies.  相似文献   

7.
The intracellular expression of single-chain Fv antibody fragments (scFv) in eukaryotic cells has an enormous potential in functional genomics and therapeutics [Marasco (1997) Gene Ther. 4, 11-15; Richardson and Marasco (1995) Trends Biotechnol. 13, 306-310]. However, the application of these so-called intrabodies is currently limited by their unpredictable behavior under the reducing conditions encountered inside eukaryotic cells, which can affect their stability and solubility properties [W?rn et al. (2000) J. Biol. Chem. 275, 2795-2803; Biocca et al. (1995) Bio/Technology 13, 1110-1115]. We present a novel system that enables selection of stable and soluble intrabody frameworks in vivo without the requirement or knowledge of antigens. This system is based on the expression of single-chain antibodies fused to a selectable marker that can control gene expression and cell growth. Our results show that the activity of a selectable marker fused to well characterized scFvs [W?rn et al. (2000) J. Biol. Chem. 275, 2795-2803] correlates with the solubility and stability of the scFv moieties. This method provides a unique tool to identify stable and soluble scFv frameworks, which subsequently serve as acceptor backbones to construct intrabody complementarity determining region libraries by randomization of hypervariable loops.  相似文献   

8.
Although intracellular antibodies (intrabodies) are being explored as putative therapeutic and research reagents, little is known about the principles that dictate the efficacy of these molecules. In our efforts to address this issue, we generated a panel of five intrabodies, directed against catalytically inactive murine caspase-3, by screening single-chain antibody (Fv) phage display libraries. Here we determined criteria that single-chain Fv fragments must fulfill to act as efficient intrabodies. The affinities of these intrabodies, as measured by surface plasmon resonance, varied approximately 5-fold (50-250 nm). Despite their substantial sequence similarity, only two of the five intrabodies were able to significantly accumulate intracellularly. These disparities in intracellular expression levels were reflected by differences in the stability of the purified protein species when analyzed by urea denaturation studies. We observed varied efficiencies in retargeting the antigen murine caspase-3, from the cytosol to the nucleus, mediated by intrabodies tagged with an SV40 nuclear localization signal. Our results demonstrate that the intrinsic stability of the intrabody, rather than its affinity for the antigen, dictates its intracellular efficacy.  相似文献   

9.
We have applied in vivo intracellular antibody capture (IAC) technology to isolate human intrabodies which bind to the oncogenic RAS protein. IAC facilitates the capture of antibody fragments, in this case single-chain Fvs (scFvs), which tolerate reducing environments, such as the cytoplasm of cancer cells. Three anti-RAS scFvs with different affinity, solubility and intracellular binding activity were characterized. The anti-RAS scFvs with highest affinity were expressed relatively poorly in mammalian cells, and greater soluble expression was achieved by mutating the antibody framework to canonical consensus scaffolds, previously derived from IAC, without losing antigen specificity. Mutagenesis experiments showed that the consensus scaffolds are functional as intrabody fragments without an intra-domain disulfide bond. Furthermore, we could convert an intrabody which does not bind RAS in mammalian cells into a high-affinity reagent capable of inhibiting RAS-mediated NIH 3T3 transformation by exchanging VH and VL complementarity-determining regions onto its consensus scaffold. These data show that the consensus scaffold is a robust framework by which to improve intrabody function.  相似文献   

10.
The high specificity of antibodies for their antigen allows a fine discrimination of target conformations and post-translational modifications, making antibodies the first choice tool to interrogate the proteome. We describe here an approach based on a large-scale intracellular expression and selection of antibody fragments in eukaryotic cells, so-called intrabodies, and the subsequent identification of their natural target within living cell. Starting from a phenotypic trait, this integrated system allows the identification of new therapeutic targets together with their companion inhibitory intrabody. We applied this system in a model of allergy and inflammation. We first cloned a large and highly diverse intrabody library both in a plasmid and a retroviral eukaryotic expression vector. After transfection in the RBL-2H3 rat basophilic leukemia cell line, we performed seven rounds of selection to isolate cells displaying a defect in FcεRI-induced degranulation. We used high throughput sequencing to identify intrabody sequences enriched during the course of selection. Only one intrabody was common to both plasmid and retroviral selections, and was used to capture and identify its target from cell extracts. Mass spectrometry analysis identified protein RGD1311164 (C12orf4), with no previously described function. Our data demonstrate that RGD1311164 is a cytoplasmic protein implicated in the early signaling events following FcεRI-induced cell activation. This work illustrates the strength of the intrabody-based in-cell selection, which allowed the identification of a new player in mast cell activation together with its specific inhibitor intrabody.  相似文献   

11.
The specific and high affinity binding properties of intracellular antibodies (intrabodies), combined with their ability to be stably expressed in defined organelles, provides powerful tools with a wide range of applications in the field of functional genomics and gene therapy. Intrabodies have been used to specifically target intracellular proteins, manipulate biological processes, and contribute to the understanding of their functions as well as for the generation of phenotypic knockouts in vivo by surface depletion of extracellular or transmembrane proteins. In order to study the biological consequences of knocking down two receptor-tyrosine kinases, we developed a novel intrabody-based strategy. Here we describe the design, engineering, and characterization of a bispecific, tetravalent endoplasmic reticulum (ER)-targeted intradiabody for simultaneous surface depletion of two endothelial transmembrane receptors, Tie-2 and vascular endothelial growth factor receptor 2 (VEGF-R2). Comparison of the ER-targeted intradiabody with the corresponding conventional ER-targeted single-chain antibody fragment (scFv) intrabodies demonstrated that the intradiabody is significantly more efficient with respect to efficiency and duration of surface depletion of Tie-2 and VEGF-R2. In vitro endothelial cell tube formation assays suggest that the bispecific intradiabody exhibits strong antiangiogenic activity, whereas the effect of the monospecific scFv intrabodies was weaker. These findings suggest that simultaneous interference with the VEGF and the Tie-2 receptor pathways results in at least additive antiangiogenic effects, which may have implications for future drug developments. In conclusion, we have identified a highly effective ER-targeted intrabody format for the simultaneous functional knockout of two cell surface receptors.  相似文献   

12.
Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.  相似文献   

13.
《MABS-AUSTIN》2013,5(6):1010-1035
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.  相似文献   

14.
Horizontal transfer of antibiotic resistance genes carried by conjugative plasmids poses a serious health problem. As conjugative relaxases are transported to recipient cells during bacterial conjugation, we investigated whether blocking relaxase activity in the recipient cell might inhibit conjugation. For that purpose, we used an intrabody approach generating a single-chain Fv antibody library against the relaxase TrwC of conjugative plasmid R388. Recombinant single-chain Fv antibodies were engineered for cytoplasmic expression in Escherichia coli cells and either selected in vitro for their specific binding to TrwC, or in vivo by their ability to interfere with conjugation using a high-throughput mating assay. Several intrabody clones were identified showing specific inhibition against R388 conjugation upon cytoplasmic expression in the recipient cell. The epitope recognized by one of these intrabodies was mapped to a region of TrwC containing Tyr-26 and involved in the conjugative DNA-processing termination reaction. These findings demonstrate that the transferred relaxase plays an important role in the recipient cell and open a new approach to identify specific inhibitors of bacterial conjugation.  相似文献   

15.
The use of antibodies in medicine and research depends on their specificity and affinity in the recogniton and binding of individual molecules. However, these applications are limited to the extracellular targets. Advances in antibody engineering has allowed the manipulation of the antibody segments containing the antigen-binding regions and generation of small fragments that can be stably expressed in cells. These entities are called intracellular antibodies or intrabodies and have being successfully applied, mainly in the scFv format, to inhibit the function of intracellular target proteins in specific cellular compartments. As new techniques to select and isolate intrabody fragments have been developed, intrabodies are beginning to be used to interfere with the function of a greater number of relevant disease targets. Just as monoclonal antibodies are opening a new era in human therapeutics, intrabodies promise a new prospective for antibody tools for therapy and research. Their varied mode of action gives intrabodies great potential in different approaches in the treatment of human diseases, as well as in the area of functional genomics for characterisation of novel gene products and subsequent validation as potential drug targets. While techniques for identifying functional intrabodies have improved, there are still many significant problems to be overcome before intrabodies can actually be used in treatment of diseases such as cancer, AIDS or neuro-degenerative disorders.  相似文献   

16.
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.  相似文献   

17.
The selective knock-down of cellular proteins has proven useful for in vivo studies of protein function and RNAi methods are readily available for this purpose. However, interfering directly at the protein level may have distinct advantages, with the intracellular targeting of antibodies (intrabodies) representing an attractive option, although not a general one. We demonstrate a novel, general strategy named suicide (or silencing) intrabody technology (SIT), based on the inducible degradation of intrabodies, which are equipped with proteasome-targeting sequences and thus converted into suicide intrabodies. We show that suicide intrabodies are able to redirect the target cellular proteins upon stimulus administration to the proteolytic machinery, thus resulting in selective protein knock-down. Remarkably, suicide intrabody acts in a catalytic fashion. SIT is a ligand-inducible strategy, potentially applicable to any protein of interest and does not require the engineering of cellular proteolytic enzymes. SIT represents a general approach to confer “neutralizing” properties to any intrabody, a valuable feature, given the present impossibility to select a priori intrinsically neutralizing antibodies. This knock-down strategy, together with available methods to isolate functional intrabodies, should allow the large-scale investigation of intracellular protein networks.  相似文献   

18.
The ectopic expression of antibody fragments inside mammalian cells (intrabodies) is a challenging approach for probing and modulating target activities. We previously described the shuttling activity of intracellularly expressed Escherichia coli beta-galactosidase conferred by the single-chain Fv (scFv) fragment 13R4 equipped with nuclear import/export signals. Here, by appending to scFvs the proteolytic PEST signal sequence (a protein region rich in proline, glutamic acid, serine and threonine) of mouse ornithine decarboxylase, we tested whether short-lived or destabilized intrabodies could affect the steady-state level of target by redirecting it to the proteasomes. In the absence of antigen, the half-life of the modified scFv 13R4, relative to untagged molecules, was considerably reduced in vivo. However, after coexpression with either cytoplasmic or nuclear antigen, the destabilized 13R4 fragments were readily maintained in the cell and strictly colocalized with beta-galactosidase. Analysis of destabilized site-directed mutants, that were as soluble as 13R4 in the intracellular context, demonstrated that binding to antigen was essential for survival under these conditions. This unique property allowed specific detection of beta-galactosidase, even when expressed at low level in stably transformed cells, and permitted isolation by flow cytometry from a transfected cell mixture of those living cells specifically labeled with bound intrabody. Altogether, we show that PEST-tagged intrabodies of sufficient affinity and solubility are powerful tools for imaging the presence and likely the dynamics of protein antigens that are resistant to proteasomal degradation in animal cells.  相似文献   

19.
20.
Prevention of abnormal misfolding and aggregation of α synuclein (syn) protein in vulnerable neurons should be viable therapeutic strategies for reducing pathogenesis in Parkinson's disease. The nonamyloid component (NAC) region of α-syn shows strong tendencies to form β-sheet structures, and deletion of this region has been shown to reduce aggregation and toxicity in vitro and in vivo. The binding of a molecular species to this region may mimic the effects of such deletions. Single-chain variable fragment (scFv) antibodies retain the binding specificity of antibodies and, when genetically manipulated to create high-diversity libraries, allow in vitro selection against peptides. Accordingly, we used a yeast surface display library of an entire naïve repertoire of human scFv antibodies to select for binding to a NAC peptide. Candidate scFv antibodies (after transfer to mammalian expression vectors) were screened for viability in a neuronal cell line by transient cotransfection with A53T mutant α-syn. This provided a ranking of the protective efficacies of the initial panel of intracellular antibodies (intrabodies). High steady-state expression levels and apparent conformational epitope binding appeared more important than in vitro affinity in these assays. None of the scFv antibodies selected matched the sequences of previously reported anti-α-syn scFv antibodies. A stable cell line expressing the most effective intrabody, NAC32, showed highly significant reductions in abnormal aggregation in two separate models. Recently, intrabodies have shown promising antiaggregation and neuroprotective effects against misfolded mutant huntingtin protein. The NAC32 study extends such work significantly by utilizing information about the pathogenic capacity of a specific α-syn region to offer a new generation of in vitro-derived antibody fragments, both for further engineering as direct therapeutics and as a tool for rational drug design for Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号