首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1–8) forms extremely long and stable non-β-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family.  相似文献   

2.
3.
Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers.  相似文献   

4.
Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.  相似文献   

5.
During aging of the human brain, and particularly in Alzheimer's disease, progressive neuronal loss is accompanied by the formation of highly stable intra- and extraneuronal protein fibers. Using fluorescence-activated particle sorting, a method has been developed for purifying essentially to homogeneity the extracellular amyloid fibers that form the cores of senile plaques. The purified plaque cores each contain 60-130 pg of protein. Their amino acid composition shows abundant glycine, trace proline, and approximately 50% hydrophobic residues; it resembles that of enriched fractions of the paired helical filaments (PHF) that accumulate intraneuronally in Alzheimer's disease. Senile plaque amyloid fibers share with PHF insolubility in numerous protein denaturants and resistance to proteinases. However, treatment of either fiber preparation with concentrated (88%) formic acid or saturated (6.8 M) guanidine thiocyanate followed by sodium dodecyl sulfate causes disappearance of the fibers and releases proteins migrating at 5-7,000 and 11-15,000 Mr which appear to be dimerically related. Following their separation by size-exclusion HPLC, the proteins solubilized from plaque amyloid and PHF-enriched fractions have highly similar compositions and, on dialysis, readily aggregate into higher Mr polymers. Antibodies raised to the major low-Mr protein selectively label both plaque cores and vascular amyloid deposits in Alzheimer brain but do not stain neurofibrillary tangles, senile plaque neurites, or any other neuronal structure. Thus, extraneuronal amyloid plaque filaments in Alzheimer's disease are composed of hydrophobic low-Mr protein(s) which are also present in vascular amyloid deposits. Current evidence suggests that such protein(s) found in PHF-enriched fractions may derive from copurifying amyloid filaments rather than from PHF.  相似文献   

6.
Abstract: Alzheimer's disease (AD) is identified by the accumulation of amyloid plaques, neurofibrillary degeneration, and the accompanying neuronal loss. AD amyloid assembles into compact fibrous deposits from the amyloid β(Aβ) protein, which is a proteo-lytic fragment of the membrane-associated amyloid precursor protein. To examine the effects of amyloid on neuron growth, a hybrid mouse motoneuron cell line (NSC34) exhibiting spontaneous process formation was exposed to artificial "plaques" created from aggregated synthetic Aβ peptides. These correspond to full-length Aβ residues 1–40 (Aβ1–40), an internal β-sheet region comprising residues 11–28 (Aβ11–28), and a proposed toxic fragment comprising residues 25–35 (Aβ25–35). Fibers were immobilized onto culture dishes, and addition of cells to these in vitro plaques revealed that Aβ was not a permissive substrate for cell adhesion. Neurites in close contact with these deposits displayed abnormal swelling and a tendency to avoid contact with the Aβ fibers. In contrast, Aβ did not affect the adhesion or growth of rat astrocytes, implicating a specific Aβ-neuron relationship. The inhibitory effects were also unique to Aβ as no response was observed to deposits of pancreatic islet amyloid poly-peptide fibers. Considering the importance of cell adhesion in neurite elongation and axonal guidance, the antiadhesive properties of Aβ amyloid plaques found in vivo may contribute to the neuronal loss responsible for the clinical manifestations of AD.  相似文献   

7.
Microorganisms produce functional amyloids that can be examined and manipulated in vivo and in vitro. Escherichia coli assemble extracellular adhesive amyloid fibers termed curli that mediate adhesion and promote biofilm formation. We have characterized the dye binding properties of the hallmark amyloid dye, Congo red, with curliated E. coli and with isolated curli fibers. Congo red binds to curliated whole cells, does not inhibit growth, and can be used to comparatively quantify whole-cell curliation. Using Surface Plasmon Resonance, we measured the binding and dissociation kinetics of Congo red to curli. Furthermore, we determined that the binding of Congo red to curli is pH-dependent and that histidine residues in the CsgA protein do not influence Congo red binding. Our results on E. coli strain MC4100, the most commonly employed strain for studies of E. coli amyloid biogenesis, provide a starting point from which to compare the influence of Congo red binding in other E. coli strains and amyloid-producing organisms.  相似文献   

8.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

9.
Amylin is a pancreatic hormone that plays important roles in overall metabolism and in glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable for patients with diabetes who need to avoid glucose excursions. Protein conjugation with polyethylene glycol (PEG) has long been known to be a convenient approach for extending the biological effects of biopharmaceuticals. We have investigated the reactivity of amylin with methoxy polyethylene glycol succinimidyl carbonate and methoxy polyethylene glycol succinimidyl propionate, which have an average molecular weight of 5 kDa. The reaction, which was conducted in both aqueous and organic (dimethyl sulfoxide) solvents, occurred within a few minutes and resulted in at least four detectable products with distinct kinetic phases. These results suggest a kinetic selectivity for PEGylation by succinimidyl derivatives; these derivatives exhibit enhanced reactivity with primary amine groups, as indicated by an evaluation of the remaining amino groups using fluorescamine. The analysis of tryptic fragments from mono- and diPEGylated amylin revealed that conjugation occurred within the 1-11 amino acid region, most likely at the two amine groups of Lys1. The reaction products were efficiently separated by C-18 reversed phase chromatography. Binding assays confirmed the ability of mono- and diPEGylated amylin to interact with the amylin co-receptor receptor activity-modifying protein 2. Subcutaneous administration in mice revealed the effectiveness of monoPEG-amylin and diPEG-amylin in reducing glycemia; both compounds exhibited prolonged action compared to unmodified amylin. These features suggest the potential use of PEGylated amylin to restore basal amylin levels.  相似文献   

10.
EAL domain-based cyclic di-GMP (c-di-GMP)-specific phosphodiesterases play important roles in bacteria by regulating the cellular concentration of the dinucleotide messenger c-di-GMP. EAL domains belong to a family of (β/α)8 barrel fold enzymes that contain a functional active site loop (loop 6) for substrate binding and catalysis. By examining the two EAL domain-containing proteins RocR and PA2567 from Pseudomonas aeruginosa, we found that the catalytic activity of the EAL domains was significantly altered by mutations in the loop 6 region. The impact of the mutations ranges from apparent substrate inhibition to alteration of oligomeric structure. Moreover, we found that the catalytic activity of RocR was affected by mutating the putative phosphorylation site (D56N) in the phosphoreceiver domain, with the mutant exhibiting a significantly smaller Michealis constant (Km) than that of the wild-type RocR. Hydrogen-deuterium exchange by mass spectrometry revealed that the decrease in Km correlates with a change of solvent accessibility in the loop 6 region. We further examined Acetobacter xylinus diguanylate cyclase 2, which is one of the proteins that contains a catalytically incompetent EAL domain with a highly degenerate loop 6. We demonstrated that the catalytic activity of the stand-alone EAL domain toward c-di-GMP could be recovered by restoring loop 6. On the basis of these observations and in conjunction with the structural data of two EAL domains, we proposed that loop 6 not only mediates the dimerization of EAL domain but also controls c-di-GMP and Mg2+ ion binding. Importantly, sequence analysis of the 5,862 EAL domains in the bacterial genomes revealed that about half of the EAL domains harbor a degenerate loop 6, indicating that the mutations in loop 6 may represent a divergence of function for EAL domains during evolution.The cyclic dinucleotide cyclic di-GMP (c-di-GMP) has emerged as a major bacterial messenger for mediating a variety of cellular functions that range from virulence expression and biofilm formation (5, 14, 30). The cellular concentration of c-di-GMP is controlled by the GGDEF domain proteins with diguanylate cyclase (DGC) activity and the EAL domain proteins with c-di-GMP-specific phosphodiesterase (PDE) activity. GGDEF domains catalyze the synthesis of c-di-GMP from GTP, whereas EAL domains catalyze the hydrolysis of c-di-GMP to generate the linear 5′-pGpG. Although a family of HD-GYP domain proteins has also been found as c-di-GMP-specific PDEs, the overwhelmingly large number of genes encoding the EAL domains in bacterial genomes suggests that the EAL domains are the major PDEs for maintaining the cellular c-di-GMP concentration. Remarkably, multiple copies of EAL domain-encoding genes are usually found in bacterial cells, with as many as 21 in Pseudomonas aeruginosa and 32 in Vibrio cholerae. Although many of the EAL domains were found to function as PDE domains for c-di-GMP degradation, emerging evidence suggests that some EAL domains function as ligand- or protein-binding domains without catalytic activity (24, 28, 40).The detailed structure and catalytic mechanism of the EAL domains have started to be elucidated recently. The crystal structures of two proteins with EAL domains, TdEAL and YkuI, have been determined (Protein Data Bank accession nos. 2BAS, 2R6O, and 2w27) (23). EAL domains adopt a (β/α)8 barrel fold that contains two extended strands, including an antiparallel strand. The (β/α)8 barrel fold, first found in triosephosphate isomerase, has been observed in a diversity of enzymes that include many hydrolyases and isomerases (34). Similar to other (β/α)8 barrel fold enzymes, the catalytic residues of the EAL domain are located at the C-terminal ends of the β-strands and the beginning of the β→α loops connecting the β-strands and α-helices. In the proposed mechanism, EAL domains catalyze the hydrolysis of c-di-GMP by using a Mg2+ ion and a general base catalyst (Glu) for generating the nucleophilic H2O (28). The catalytic mechanism is supported by the crystal structure of the YkuI-substrate binary complex (Protein Data Bank accession no. 2w27) and the model of the TdEAL-substrate complex (23, 28). Both structures showed that the EAL domains bind c-di-GMP in such a configuration that the scissile phosphorus-oxygen bond aligns linearly with the attaching water and the general base catalyst. The catalytic mechanism can account for the lack of catalytic activity for most known inactive EAL domains, with the loss of enzymatic activity arising from the absence of the general base catalyst and/or the residues that coordinate the Mg2+ ion (28).It is well-known that many (β/α)8 barrel fold enzymes contain a flexible active site loop between the β6 strand and α6 helix (34). Despite the diverse reactions catalyzed by (β/α)8 barrel fold enzymes, this extended loop, often referred to as loop 6, plays an important role as a functional lid for substrate sequestering, solvent exclusion, and product release (15). The loop was found to facilitate substrate binding and conformational transition in tryptophan synthase (3, 4) and functions as a lid for substrate sequestering during catalysis in inosine 5′-monophosphate dehydrogenase (22). Notably, it was shown that the loop sways from the active site in the nonactive structure of ribulose-1,5-bisphosphate carboxylase but folds over to shield the active site from the solvent in the activated structure (21). Similar functions have also been proposed for loop 6 in other (β/α)8 barrel fold enzymes, such as triosephosphate isomerase and phosphoriboxyl anthranilate isomerase (15, 25, 26). Hence, it seems that the functional role of loop 6 has been well preserved in (β/α)8 barrel fold enzymes during evolution. The (β/α)8 barrel folded EAL domains also contain an eight-residue loop between the β6 strand and α6 helix that seems to be critical for catalysis. Schmidt and coworkers (32) first noticed that the catalytically active EAL domains seem to contain a conserved motif that was later confirmed to contain loop 6 [DFG(T/A)GYSS] and one of the residues (Asp) for Mg2+ binding (28, 32). We previously noticed that mutation of the essential catalytic residues is usually accompanied by the degeneration of loop 6 in catalytically inactive EAL domains (28). Moreover, we observed that the mutation of a residue interacting with loop 6 in the EAL domain-containing RocR abolished enzymatic activity, which led us to postulate a critical role for loop 6 in catalysis (28).To elucidate the precise role played by loop 6 in c-di-GMP hydrolysis, we examined three EAL domain-containing proteins that include RocR, PA2567, and A. xylinus DGC2. The residues of loop 6 [DFG(A/T)SYSS] in RocR and PA2567 are well conserved, as observed in other catalytically active EAL domains. We show that mutations in the loop 6 region in RocR and PA2567 had significant effect on the structure and catalysis of the EAL domain. By using the method of hydrogen-deuterium (H/D) exchange-coupled mass spectrometry, we demonstrated that a single remote mutation in the phosphoreceiver domain of RocR caused correlated changes in loop 6 conformation and catalytic properties. We further show that the catalytic activity of the inactive EAL domain of A. xylinus DGC2 can be recovered by restoring loop 6. The functional roles of loop 6 in EAL domains in substrate binding and catalysis were discussed in conjunction with the structural data for two EAL domains.  相似文献   

11.
Amylin is a pancreatic hormone cosecreted with insulin that exerts unique roles in metabolism and glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable in diabetes mellitus. Protein conjugation with the biocompatible polymer polyethylene glycol (PEG) has been shown to extend the biological effects of biopharmaceuticals. We have designed a PEGylated human amylin by using the aminoreactive compound methoxylpolyethylene glycol succinimidyl carbonate (mPEGsc). The synthesis in organic solvent resulted in high yields of monoPEGylated human amylin, which showed large stability against aggregation, an 8 times increase in half-life in vivo compared to the non-conjugated amylin, and pharmacological activity as shown by modulation of cAMP production in MCF–7 cell line, decrease in glucagon and modulation of glycemia following subcutaneous administration in mice. Altogether these data reveal the potential use of PEGylated human amylin for the restoration of fasting amylin levels.  相似文献   

12.
Abstract: Neurotransmitter receptors that increase phosphatidylinositol hydrolysis generate second messengers that activate protein kinase C. Here, we used metabotropic glutamate receptor agonists to increase both phosphatidylinositol hydrolysis and secretion of the soluble extracellular fragment of amyloid precursor protein (APPs) from cortical astrocyte cultures. The increase in APPs secretion was mimicked by direct activation of protein kinase C with phorbol ester and was suppressed by the metabotropic glutamate receptor antagonist l -(+)-2-amino-3-phosphonopropionic acid or by the protein kinase C inhibitor GF109203X. Ionotropic glutamate agonists did not increase APPs secretion. Forskolin or dibutyryl cyclic AMP inhibited the increase in APPs secretion caused by metabotropic glutamate receptor agonists or by phorbol ester treatment but did not affect basal APPs levels. Therefore, glutamatergic agonists that increase protein kinase C activation or decrease cyclic AMP formation may enhance the conversion of full-length APP to nonamyloidogenic APPs in Alzheimer's disease.  相似文献   

13.
Abstract: The fibrillogenic properties of Alzheimer's Aβ peptides corresponding to residues 1–40 of the normal human sequence and to two mutant forms containing the replacement Ala21 to Gly or Glu22 to Gln were compared. At pH 7.4 and 37°C the Gln22 peptide was found to aggregate and precipitate from solution faster than the normal Aβ, whereas the Gly21 peptide aggregated much more slowly. Electron microscopy showed that the aggregates all had fibrillar structures. Circular dichroism spectra of these peptides revealed that aggregation of the normal and Gln22 sequences was associated with spectral changes consistent with a transformation from random coil to β sheet, whereas the spectrum of the Gly21 peptide remained almost unchanged during a period in which little or no aggregation occurred. When immobilised by spotting onto nitrocellulose membranes the peptides bound similar amounts of the radioisotope 65Zn2+. Of several competing metal ions, tested at 20× the concentration of Zn2+, Cu2+ displaced >95% of the radioactivity from all three peptides and Ni2+ produced >50% displacement in each case. Some other metal ions tested caused lesser displacement, but Fe2+ and Al3+ were without effect. In a saturation binding assay, a value of 3.2 µM was obtained for the binding of Zn2+ to Aβ but our data provided no evidence for a reported higher affinity site (107 nM). The results suggest that the neuropathology associated with the Gly21 mutation is not due to enhanced fibrillogenic or different metal-binding properties of the peptide and that the binding of zinc to amyloid peptides is not a specific phenomenon.  相似文献   

14.
15.
Beta amyloid (Aβ) deposits are seen in aged individuals in many of the mammalian species that possess the same Aβ amino acid sequence as humans. Conversely, neurofibrillary tangles (NFT), the other hallmark lesion of Alzheimer’s disease (AD), are extremely rare in these animals. We detected Aβ deposits in the brains of Tsushima leopard cats (Prionailurus bengalensis euptilurus) that live exclusively on Tsushima Island, Japan. Aβ42 was deposited in a granular pattern in the neuropil of the pyramidal cell layer, but did not form argyrophilic senile plaques. These Aβ deposits were not immunolabeled with antibodies to the N-terminal of human Aβ. Sequence analysis of the amyloid precursor protein revealed an amino acid substitution at the 7th residue of the Aβ peptide. In a comparison with other mammalian animals that do develop argyrophilic senile plaques, we concluded that the alternative Aβ amino acid sequence displayed by leopard cats is likely to be related to its distinctive deposition pattern. Interestingly, most of the animals with these Aβ deposits also developed NFTs. The distributions of hyperphosphorylated tau-positive cells and the two major isoforms of aggregated tau proteins were quite similar to those seen in Alzheimer’s disease. In addition, the unphosphorylated form of GSK-3β colocalized with hyperphosphorylated tau within the affected neurons. In conclusion, this animal species develops AD-type NFTs without argyrophilic senile plaques.  相似文献   

16.
Human amylin forms structurally heterogeneous amyloids that have been linked to type-2 diabetes. Thus, understanding the molecular interactions governing amylin aggregation can provide mechanistic insights in its pathogenic formation. Here, we demonstrate that fibril formation of amylin is altered by synthetic amphipathic copolymer derivatives of the styrene-maleic-acid (SMAQA and SMAEA). High-speed AFM is used to follow the real-time aggregation of amylin by observing the rapid formation of de novo globular oligomers and arrestment of fibrillation by the positively-charged SMAQA. We also observed an accelerated fibril formation in the presence of the negatively-charged SMAEA. These findings were further validated by fluorescence, SOFAST-HMQC, DOSY and STD NMR experiments. Conformational analysis by CD and FT-IR revealed that the SMA copolymers modulate the conformation of amylin aggregates. While the species formed with SMAQA are α-helical, the ones formed with SMAEA are rich in β-sheet structure. The interacting interfaces between SMAEA or SMAQA and amylin are mapped by NMR and microseconds all-atom MD simulation. SMAEA displayed π-π interaction with Phe23, electrostatic π-cation interaction with His18 and hydrophobic packing with Ala13 and Val17; whereas SMAQA showed a selective interaction with amylin’s C terminus (residues 31–37) that belongs to one of the two β-sheet regions (residues 14–19 and 31–36) involved in amylin fibrillation. Toxicity analysis showed both SMA copolymers to be non-toxic in vitro and the amylin species formed with the copolymers showed minimal deformity to zebrafish embryos. Together, this study demonstrates that chemical tools, such as copolymers, can be used to modulate amylin aggregation, alter the conformation of species.  相似文献   

17.
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
N-Terminal fragment of hog pepsin   总被引:1,自引:0,他引:1  
  相似文献   

20.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号