首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The rate of exchange of urea across the membranes of human erythrocytes (red blood cells) was quantified on the 1-s to 2-min timescale. 13C-urea was hyperpolarized and subjected to rapid dissolution and the previously reported (partial) resolution of 13C NMR resonances from the molecules inside and outside red blood cells in suspensions was observed. This enabled a stopped-flow type of experiment to measure the (initially) zero-trans transport of urea with sequential single-pulse 13C NMR spectra, every second for up to ∼2 min. Data were analyzed using Bayesian reasoning and a Markov chain Monte Carlo method with a set of simultaneous nonlinear differential equations that described nuclear magnetic relaxation combined with transmembrane exchange. Our results contribute to quantitative understanding of urea-exchange kinetics in the whole body; and the methodological approach is likely to be applicable to other cellular systems and tissues in vivo.  相似文献   

2.
The 13C NMR spectrum of 13C-urea in a suspension of human red cells of reduced mean cell volume was observed to contain partially resolved resonances arising from the intra- and extracellular populations of the compound. It was shown that at 25°C and a magnetic field strength of 9.4 T, the rate of exchange of urea between the intra- and extracellular populations was such that the NMR lineshape was sensitive to a change in the rate of 13C-urea exchange, induced either by the addition of the urea transport inhibitor phloretin, or by the addition of 12C-urea. Total lineshape analysis of r3C NMR spectra of 13C-urea in red cell suspensions containing different concentrations of 12C-urea resulted in a weighted mean estimate for the Km and Vmax for urea equilibrium exchange from three experiments of 44 ± 18 mM and 3.1 ± 0.6 × 10–8 molcm–2 s–1, respectively (the errors denote the weighted mean standard deviations). These estimates of Km and Vmax, were significantly lower than previous values reported in the literature and determined using other techniques. Correspondence to: P. W Kuchel  相似文献   

3.
A water-soluble dextran was produced by purified dextransucrase from Leuconostoc mesenteroides NRRL B-640. The dextran was purified by alcohol precipitation. The structure of dextran was determined by FT-IR, 1H NMR, 13C NMR and 2-dimensional NMR spectroscopic techniques. NMR techniques (1D 1H, 13C and 2D HMQC) were used to fully assign the 1H and 13C spectra. All the spectral data showed that the dextran contains d-glucose residues in a linear chain with consecutive α(1  6) linkages. No branching was observed in the dextran structure. The viscosity of dextran solution decreased with the increase in shear rate exhibiting a typical non-Newtonian pseudoplastic behavior. The surface morphology of dried and powdered dextran studied using Scanning electron microscopy revealed the cubical porous structure.  相似文献   

4.
Determination of oxidative metabolism in the brain using in vivo 13C NMR spectroscopy (13C MRS) typically requires repeated blood sampling throughout the study to measure blood glucose concentration and fractional enrichment (input function). However, drawing blood from small animals, such as young rats, placed deep inside the magnet is technically difficult due to their small total blood volume. In the present study, a custom-built animal holder enabled temporary removal of the animal from the magnet for blood collection, followed by accurate repositioning in the exact presampling position without degradation of B0 shimming. 13C label incorporation into glutamate C4 and C3 positions during a 120 min [1,6-13C2] glucose infusion was determined in 28-day-old rats (n = 4) under α-chloralose sedation using localized, direct-detected in vivo 13C MRS at 9.4T. The tricarboxylic acid cycle activity rate (V TCA) determined using a one-compartment metabolic modeling was 0.67 ± 0.13 μmol/g/min, a value comparable to previous ex vivo studies. This methodology opens the avenue for in vivo measurements of brain metabolic rates using 13C MRS in small animals.  相似文献   

5.
A gene which encodes a hypothetical protein of 40 kDa has been identified in the genome of a marine bacterium Hahella chejuensis, as a putative member of βγ-crystallin superfamily. This hypothetical protein contains a putative βγ-crystallin-like domain, along with other domains for carbohydrate binding regions. It is named as Hahellin. A PCR amplified stretch of 92-amino acid residue long protein was cloned into pET21a vector and overexpressed in Escherichia coli strain BL21(DE3)pLysS cells. The recombinant Hahellin, produced as inclusion bodies, was estimated to be around 50% of the total cellular protein content which was solubilized in 8 M urea. The protein was purified and refolded using an anion exchange column. The MALDI-TOF mass spectrometry revealed the purity and monomeric nature of the protein. Further, a method to prepare isotopically (15N/13C) labeled protein with high yield for NMR studies is reported. The uniformly 15N-labeled Hahellin thus produced has been characterized by recording a sensitivity enhanced 2D [15N]–[1H] HSQC spectrum. The well, dispersed peaks in the spectrum confirm that the protein is indeed well folded and suitable for further studies by NMR.  相似文献   

6.
Coxon B 《Carbohydrate research》2005,340(10):1714-1721
Complete 1H and 13C NMR chemical shift assignments have been generated from a series of acetamidodeoxy and aminodeoxy sugar derivatives. For free sugars, the enhanced sensitivity of an NMR cryoprobe allowed simple 1D and 2D NMR spectra to be obtained from essentially single anomers, before significant mutarotation had occurred. The NMR assignments have been used to characterize deuterium isotope effects on 13C chemical shifts measured under conditions of slow NH to ND exchange in single solutions. Within a range of 0 to −0.138 ppm, β, γ, δ, and ζ deuterium isotope effects have been observed, thus providing additional reference data for assignment of the 13C NMR spectra of nitrogenous saccharides.  相似文献   

7.
Solid-state NMR has been used to examine the binding of N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1-13C]glycine and l-[?-15N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from 19F of oritavancin to 13C and 15N labels of the membrane-associated peptidoglycan and to the 31P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge 13C labels to phosphate 31P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.  相似文献   

8.
To elucidate the native-state crystal structure of beeswax from the Japanese bee, Apis cerana japonica, we determined the relationship between temperature and the 13C solid-state nuclear magnetic resonance (NMR) chemical shift of methylene carbon of beeswax, with comparison to n-alkanes and polyethylene in the orthorhombic, monoclinic, or triclinic crystal form. Variable-temperature 13C solid-state NMR observations of n-alkanes and polyethylene revealed that the chemical shifts of methylene carbon in the orthorhombic crystal form increased linearly with increasing temperature, that of the triclinic form decreased, and that of the monoclinic form was unaltered. These relations were compared with results of variable-temperature 13C solid-state NMR observation of beeswax. Results clarified that the two crystal forms comprising the beeswax in the native state are orthorhombic and monoclinic. The variable-temperature 13C solid-state NMR observations were also applied to interpret the differential scanning calorimetry (DSC) curve of beeswax. They were used to clarify the structural changes of beeswax for widely various temperatures. For beeswax secreted by the Japanese bee, the transition from the orthorhombic form to the rotator phase occurred at 36 °C, that is from the crystalline to the intermediate state at 45 °C. Moreover, the variable-temperature 13C solid-state NMR spectrum of honeybee silk in the native state was observed. Results demonstrated that the secondary structures of honeybee silk proteins in the native state comprised coexisting α-helix and β-sheet conformations and that the amount of α-helices was greater. The α-helix content of honeybee silk was compared with that of hornet silk produced by Vespa larvae.  相似文献   

9.
The three-dimensional structure of the outer membrane protein A from Klebsiella pneumoniae transmembrane domain was determined by NMR. This protein induces specific humoral and cytotoxic responses, and is a potent carrier protein. This is one of the largest integral membrane proteins (210 residues) for which nearly complete resonance assignment, including side chains, has been achieved so far. The methodology rested on the use of 900 MHz 3D and 4D TROSY experiments recorded on a uniformly 15N,13C,2H-labeled sample and on a perdeuterated methyl protonated sample. The structure was refined from 920 experimental constraints, giving an ensemble of 20 best structures with an r.m.s. deviation of 0.54 Å for the main chain atoms in the core eight-stranded β-barrel. The protein dynamics was assessed, in a residue-specific manner, by 1H-15N NOEs (pico- to nanosecond timescale), exchange broadening (millisecond to second) and 1H-2H chemical exchange (hour-weeks).  相似文献   

10.
We studied the effects of foliar application of urea or methyl-jasmonate (MeJA) on the salinity tolerance of broccoli plants (Brassisca oleracea L. var. italica). Plant dry weight, leaf CO2 assimilation, and root respiration were reduced significantly under moderate saline stress (40 mM NaCl) but application of either urea or MeJA maintained growth, gas exchange parameters, and leaf N–NO3 concentrations at values similar to those of non-salinized plants. Additionally, when these two foliar treatments were applied leaf Na+ concentration was reduced compared with control plants grown at 40 mM NaCl. However, at a higher salt concentration (120 mM NaCl), no effect of the foliar applications was found on these parameters. Salinity also decreased leaf δ15N but increased δ13C. Our study shows the feasibility of using foliar urea or MeJA to improve tolerance under moderate saline stress.  相似文献   

11.
The new tricyclic brominated diterpenoid, neorogioltriol (1), was isolated from the organic extract of the red alga Laurencia glandulifera, collected at Kefalonia Island in Western Greece. Assignment of the 1H and 13C NMR resonances were carried out by extensive analysis of its NMR spectra. The new metabolite was evaluated for its analgesic activity using the writhing test in mice and the formalin test in rats. A dose-dependant antiinociceptive response was observed in the writhing test at 0.5 and 1 mg/kg with an IC50 of 12.5 μg/kg. Compound 1 also inhibited the second phase of the formalin test.  相似文献   

12.
A straightforward way to visualize gel to liquid-crystalline phase transition in phospholipid membranes is presented by using 13C magic-angle spinning NMR. The changes in the 13C isotropic chemical shifts with increasing temperature are shown to be a sensitive probe of the main thermotropic phase transition related to lipid hydrocarbon chain dynamics and relevant conformational changes. The average value of the energy difference between trans and gauche states in the central C4–11 fragment of the DMPC acyl chain was estimated to be 4.02 ± 0.2 kJ mol 1 in the liquid crystalline phase. The reported spectral features will be useful in 13C solid state NMR studies for direct monitoring of the effective lipid chain melting allowing rapid uniaxial rotation of membrane proteins in the biologically relevant liquid-crystalline phase.  相似文献   

13.
Within grazed pastures, urine patches are hot spots of nitrogen turnover, since dietary N surpluses are excreted mainly as urea in the urine. This short-term experiment investigated 13C uptake in microbial lipids after simulated deposition of cattle urine at 10.0 and 17.1 g of urea C m−2. Confined field plots without or with cattle urine amendment were sampled after 4 and 14 days, and soil from 0- to 5-cm and 10- to 20-cm depths was analyzed for content and composition of phospholipid fatty acids (PLFAs) and for the distribution of urea-derived 13C among individual PLFAs. Carbon dioxide emissions were quantified, and the contributions derived from urea were assessed. Initial changes in PLFA composition were greater at the lower level of urea, as revealed by a principal-component analysis. At the higher urea level, osmotic stress was indicated by the dynamics of cyclopropane fatty acids and branched-chain fatty acids. Incorporation of 13C from [13C]urea was low but significant, and the largest amounts of urea-derived C were found in common fatty acids (i.e., 16:0, 16:1ω7c, and 18:1ω7) that would be consistent with growth of typical NH4+-oxidizing (Nitrosomonas) and NO2-oxidizing (Nitrobacter) bacteria. Surprisingly, a 20‰ depletion of 13C in the cyclopropane fatty acid cy17:0 was observed after 4 days, which was replaced by a 10 to 20‰ depletion of that in cy19:0 after 14 days. Possible reasons for this pattern are discussed. Autotrophic nitrifiers could not be implicated in urea hydrolysis to any large extent, but PLFA dynamics and the incorporation of urea-derived 13C in PLFAs indicated a response of nitrifiers which differed between the two urea concentrations.  相似文献   

14.
A mesomeric form of quaternary indoloquinazoline alkaloid, soyauxinium chloride (1) was obtained through the chemical investigation of stem bark and roots of Araliopsis soyauxii Engl. [syn. Vepris soyauxii (Engl.) Mziray] (Rutaceae) together with fifteen known compounds, including three furoquinoline alkaloids, three 2-quinolones, two limonoids, two triterpenes, two steroids, a coumarin, an acridone alkaloid, and a flavonoid glycoside. Their structures were established by comprehensive spectroscopic and spectrometric analyses (1D and 2D NMR, ESI-HR-MS) and by comparison with previously reported data. 13C NMR data of araliopsinine are also reported here for the first time. The isolated compounds were screened in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. However, none of the tested compounds exhibited strong anti-proliferative or cytotoxic activities, to either prostate PC-3 cells or colon HT-29 cells. At 100 μM, the furoquinoline maculine showed a slightly increased anti-proliferative effect, however, exclusively on HT-29 cells. The chemotaxonomic significance of the isolated compounds has also been discussed.  相似文献   

15.
A new dimeric carbazole alkaloid, 3,3′,5,5′,8-pentamethyl-3,3′-bis(4-methylpent-3-en-1-yl)-3,3′,11,11′-tetrahydro-10,10′-bipyrano[3,2-a]carbazole, was isolated from the hexane extract of leaves of Murraya koenigii (L.) Sprengel. (Family: Rutaceae). The structure was elucidated based on 13C and 1H NMR, High-Resolution Mass Spectrometry (HRMS), and 2D NMR data. The in vitro antidiabetic activity of the new dimer was investigated in terms of α-amylase and α-glucosidase enzyme inhibition assays. The dimer exhibited significant α-amylase inhibitory activity (IC50 = 30.32 ± 0.34 ppm) and α-glucosidase inhibitory activity (IC50 = 30.91 ± 0.36 ppm).  相似文献   

16.
An indole compound with a strong purple–red color was produced by boiling a solution of indican under acidic conditions and purified by chromatographies on DEAE-650S Toyopearl TSK-gel and silica-gel columns. The purple-red compound purified was identified as indoxyl red, on the basis of FAB Mass, 13C NMR, 1H NMR, UV–visible spectra, and IR spectra. Although indoxyl red was first synthesized by Seidel9 70 years ago, very little information has been available on its characteristics. We repot here that the compound was purple-red colored at acidic pH and green at pH 13, and showed antiproliferative and cytotoxic activities to the mouse B cell lymphoma cell line NSF202.  相似文献   

17.
Aiming for structural analysis of amphotericin B (AmB) ion-channel assemblies in membrane, a covalent dimer was synthesized between 13C-labled AmB methyl ester and 19F-labled AmB. The dimer showed slightly weaker but significant biological activities against fungi and red blood cells compared with those of monomeric AmB. Then the dimer was subjected to 13C{19F}REDOR (Rotational-Echo Double Resonance) experiments in hydrated lipid bilayers. The obtained REDOR dephasing effects were explained by two components; a short 13C/19F distance (6.9 Å) accounting for 23% of the REDOR dephasing, and a longer one (14 Å) comprising the rest of the dephasing. The shorter distance is likely to reflect the formation of barrel-stave ion channel.  相似文献   

18.
The kinetics of HCO3?/Cl? exchange across red cell membrane of newborn infants was studied using a stopped-flow rapid reaction apparatus with a glass pH electrode attached. The measured apparent permeability P is (1.35±0.08 (S.E.)) · 10?4 cm/s (n=30) for newborns, compared with (3.1 ± 0.4) · 10?4 cm/s (n=15) for adults. These correspond to half-times of 0.2 s for newborns and 0.1 s for adults indicating that neonatal red cells exchange Cl? for HCO3? only half as fast as do adult cells. The temperature dependence of the exchange rate was studied from 2 to 42°C. From the Arrhenius plot the activation energy of the exchange process in neonatal red cells changes from 22.9 kcal/mol (low temperature) to 4.8 kcal/mol (physiological temperature) at a transition temperature of 17°C. These values are lower than the corresponding values for adult red cells, 34.7 and 10.2 kcal/mol. HCO3?/Cl? exchanges in both adult and neonatal red cells are inhibited by phlorizin. Inhibition constants Ki are 0.8 mM and 2.5 mM for adults and newborns, respectively. The differences in the values of the HCO3?/Cl? exchange rate constant and the activation energy of the exchange process between neonatal and adult red cells indicate that there is a modification of HCO3?/Cl? transport system in the neonatal red cell membranes.  相似文献   

19.
《Biophysical journal》2022,121(23):4635-4643
Protein interiors contain void space that can bind small gas molecules. Determination of gas pathways and kinetics in proteins has been an intriguing and challenging task. Here, we combined computational methods and the hyperpolarized xenon-129 chemical exchange saturation transfer (hyper-CEST) NMR technique to investigate xenon (Xe) exchange kinetics in maltose-binding protein (MBP). A salt bridge ~9 Å from the Xe-binding site formed upon maltose binding and slowed the Xe exchange rate, leading to a hyper-CEST 129Xe signal from maltose-bound MBP. Xe dissociation occurred faster than dissociation of the salt bridge, as shown by 13C NMR spectroscopy and variable-B1 hyper-CEST experiments. “Xe flooding” molecular dynamics simulations identified a surface hydrophobic site, V23, that has good Xe binding affinity. Mutations at this site confirmed its role as a secondary exchange pathway in modulating Xe diffusion. This shows the possibility for site-specifically controlling xenon protein-solvent exchange. Analysis of the available MBP structures suggests a biological role of MBP’s large hydrophobic cavity to accommodate structural changes associated with ligand binding and protein-protein interactions.  相似文献   

20.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号