共查询到20条相似文献,搜索用时 15 毫秒
1.
Kathleen?S. McDowell Fijoy Vadakkumpadan Robert Blake Joshua Blauer Gernot Plank Rob?S. MacLeod Natalia?A. Trayanova 《Biophysical journal》2013,104(12):2764-2773
Atrial fibrillation (AF), the most common arrhythmia in humans, is initiated when triggered activity from the pulmonary veins propagates into atrial tissue and degrades into reentrant activity. Although experimental and clinical findings show a correlation between atrial fibrosis and AF, the causal relationship between the two remains elusive. This study used an array of 3D computational models with different representations of fibrosis based on a patient-specific atrial geometry with accurate fibrotic distribution to determine the mechanisms by which fibrosis underlies the degradation of a pulmonary vein ectopic beat into AF. Fibrotic lesions in models were represented with combinations of: gap junction remodeling; collagen deposition; and myofibroblast proliferation with electrotonic or paracrine effects on neighboring myocytes. The study found that the occurrence of gap junction remodeling and the subsequent conduction slowing in the fibrotic lesions was a necessary but not sufficient condition for AF development, whereas myofibroblast proliferation and the subsequent electrophysiological effect on neighboring myocytes within the fibrotic lesions was the sufficient condition necessary for reentry formation. Collagen did not alter the arrhythmogenic outcome resulting from the other fibrosis components. Reentrant circuits formed throughout the noncontiguous fibrotic lesions, without anchoring to a specific fibrotic lesion. 相似文献
2.
Kathleen S. McDowell Sohail Zahid Fijoy Vadakkumpadan Joshua Blauer Rob S. MacLeod Natalia A. Trayanova 《PloS one》2015,10(2)
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible. 相似文献
3.
4.
5.
目前,发生率最高的心率失常被认为是心房纤颤,且该病的发生率随着年龄的增长而上升。伴随着我国人口年龄结构的变化,心房纤颤在我国的发病率逐渐增加。了解该病的发生和发展的机制十分迫切。已经证明,心房重构是该病的重要发生机制。随着研究的加深,研究人员对心房重构与该病的病理学机制有了更加深刻的了解。现就心房纤颤和重构在发病中的机制进行回顾。 相似文献
6.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the general population; yet, the precise mechanisms resulting in AF are not fully understood. Caveolin-1 (Cav-1), the principal structural component of caveolae organelles in cardiac fibroblasts, is involved in several cardiovascular conditions; however, the study on its function in atrium, in particular, in AF, is still lacking. This report examines the hypothesis that Cav-1 confers an anti-AF effect by mediating atrial structural remodeling through its anti-fibrotic action. We evaluated the expression of Cav-1, transforming growth factor-β1 (TGF-β1), and fibrosis in atrial specimens of 13 patients with AF and 10 subjects with sinus rhythm, and found that the expression of Cav-1 was significantly downregulated, whereas TGF-β1 level, collagens I/III contents and atrial fibrosis were markedly increased, in AF. Western blot analysis demonstrated that treatment of human atrial fibroblasts (HAFs) with TGF-β1 resulted in a concentration- and time-dependent repression of Cav-1. Downregulation of Cav-1 with siRNA increased the TGF-β1-induced activation of Smad signal pathway and collagens production in HAFs. Furthermore, incubation of HAFs with the peptides derived from Cav-1 to achieve Cav-1 gain-of-function abolished the TGF-β1-induced production of collagens I/III and decreases of MMP-2/-9 expression. Therefore it was concluded that Cav-1 is an important anti-AF signaling mediator by conferring its anti-fibrotic effects in atrium. 相似文献
7.
Richard T. Carrick Oliver R. J. Bates Bryce E. Benson Nicole Habel Jason H. T. Bates Peter S. Spector 《PloS one》2015,10(3)
The goal of this study was to determine quantitative relationships between electrophysiologic parameters and the propensity of cardiac tissue to undergo atrial fibrillation. We used a computational model to simulate episodes of fibrillation, which we then characterized in terms of both their duration and the population dynamics of the electrical waves which drove them. Monte Carlo sampling revealed that episode durations followed an exponential decay distribution and wave population sizes followed a normal distribution. Half-lives of reentrant episodes increased exponentially with either increasing tissue area to boundary length ratio (A/BL) or decreasing action potential duration (APD), resistance (R) or capacitance (C). We found that the qualitative form of fibrillatory activity (e.g., multi-wavelet reentry (MWR) vs. rotors) was dependent on the ratio of resistance and capacitance to APD; MWR was reliably produced below a ratio of 0.18. We found that a composite of these electrophysiologic parameters, which we term the fibrillogenicity index (Fb = A/(BL*APD*R*C)), reliably predicted the duration of MWR episodes (r2 = 0.93). Given that some of the quantities comprising Fb are amenable to manipulation (via either pharmacologic treatment or catheter ablation), these findings provide a theoretical basis for the development of titrated therapies of atrial fibrillation. 相似文献
8.
Fibroblasts are activated in heart failure (HF) and produce fibrosis, which plays a role in maintaining atrial fibrillation (AF). The effect of HF on fibroblast ion currents and its potential role in AF are unknown. Here, we used a patch-clamp technique to investigate the effects of HF on atrial fibroblast ion currents, and mathematical computation to assess the potential impact of this remodeling on atrial electrophysiology and arrhythmogenesis. Atrial fibroblasts were isolated from control and tachypacing-induced HF dogs. Tetraethylammonium-sensitive voltage-gated fibroblast current (IKv,fb) was significantly downregulated (by ∼44%), whereas the Ba2+-sensitive inward rectifier current (IKir,fb) was upregulated by 79%, in HF animals versus controls. The fibroblast resting membrane potential was hyperpolarized (−53 ± 2 mV vs. −42 ± 2 mV in controls) and the capacitance was increased (29.7 ± 2.2 pF vs. 17.8 ± 1.4 pF in controls) in HF. These experimental findings were implemented in a mathematical model that included cardiomyocyte-fibroblast electrical coupling. IKir,fb upregulation had a profibrillatory effect through shortening of the action potential duration and hyperpolarization of the cardiomyocyte resting membrane potential. IKv,fb downregulation had the opposite electrophysiological effects and was antifibrillatory. Simulated pharmacological blockade of IKv,fb successfully terminated reentry under otherwise profibrillatory conditions. We conclude that HF induces fibroblast ion-current remodeling with IKv,fb downregulation and IKir,fb upregulation, and that, assuming cardiomyocyte-fibroblast electrical coupling, this remodeling has a potentially important effect on atrial electrophysiology and arrhythmogenesis, with the overall response depending on the balance of pro- and antifibrillatory contributions. These findings suggest that fibroblast K+-current remodeling is a novel component of AF-related remodeling that might contribute to arrhythmia dynamics. 相似文献
9.
Patrick Lugenbiel Fabian Wenz Katharina Govorov Patrick A. Schweizer Hugo A. Katus Dierk Thomas 《PloS one》2015,10(3)
Atrial fibrillation (AF) and heart failure (HF) are two of the most common cardiovascular diseases. They often coexist and account for significant morbidity and mortality. Alterations in cellular Ca2+ homeostasis play a critical role in AF initiation and maintenance. This study was designed to specifically elucidate AF-associated remodeling of atrial Ca2+ cycling in the presence of mild HF. AF was induced in domestic pigs by atrial burst pacing. The animals underwent electrophysiologic and echocardiographic examinations. Ca2+ handling proteins were analyzed in right atrial tissue obtained from pigs with AF (day 7; n = 5) and compared to sinus rhythm (SR) controls (n = 5). During AF, animals exhibited reduction of left ventricular ejection fraction (from 73% to 58%) and prolonged atrial refractory periods. AF and HF were associated with suppression of protein kinase A (PKA)RII (-62%) and Ca2+-calmodulin-dependent kinase II (CaMKII) δ by 37%, without changes in CaMKIIδ autophosphorylation. We further detected downregulation of L-type calcium channel (LTCC) subunit α2 (-75%), sarcoplasmic reticulum Ca2+-ATPase (Serca) 2a (-29%), phosphorylated phospholamban (Ser16, -92%; Thr17, -70%), and phospho-ryanodine receptor 2 (RyR2) (Ser2808, -62%). Na+-Ca2+ exchanger (NCX) levels were upregulated (+473%), whereas expression of Ser2814-phosphorylated RyR2 and LTCCα1c subunits was not significantly altered. In conclusion, AF produced distinct arrhythmogenic remodeling of Ca2+ handling in the presence of tachycardia-induced mild HF that is different from AF without structural alterations. The changes may provide a starting point for personalized approaches to AF treatment. 相似文献
10.
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF. 相似文献
11.
Carlos Sánchez Alfonso Bueno-Orovio Erich Wettwer Simone Loose Jana Simon Ursula Ravens Esther Pueyo Blanca Rodriguez 《PloS one》2014,9(8)
Aims
Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions.Methods and Results
Human AP recordings in atrial trabeculae (n = 469) from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in GK1, GKur and Gto, consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in IK1 and INaK underlies variability in APD90, variability in IKur, ICaL and INaK modulates variability in APD50 and combined variability in Ito and IKur determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by IK1 and either INaK or INaCa depending on the model.Conclusion
Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in human atrial AP duration and morphology in SR versus cAF. 相似文献12.
13.
Renate B. Schnabel Matthias Michal Sandra Wilde J?rg Wiltink Philipp S. Wild Christoph R. Sinning Edith Lubos Francisco M. Ojeda Tanja Zeller Thomas Munzel Stefan Blankenberg Manfred E. Beutel 《PloS one》2013,8(12)
Background
Initial evidence suggests that depressive symptoms are more frequent in patients with atrial fibrillation. Data from the general population are limited.Methods and Results
In 10,000 individuals (mean age 56±11 years, 49.4% women) of the population-based Gutenberg Health Study we assessed depression by the Patient Health Questionnaire (PHQ-9) and a history of depression in relation to manifest atrial fibrillation (n = 309 cases). The median (25th/75th percentile) PHQ-9 score of depressive symptoms was 4 (2/6) in atrial fibrillation individuals versus 3 (2/6) individuals without atrial fibrillation, . Multivariable regression analyses of the severity of depressive symptoms in relation to atrial fibrillation in cardiovascular risk factor adjusted models revealed a relation of PHQ-9 values and atrial fibrillation (odds ratio (OR) 1.04, 95% confidence interval (CI) 1.01–1.08; P = 0.023). The association was stronger for the somatic symptom dimension of depression (OR 1.08, 95% CI 1.02–1.15; P = 0.0085) than for cognitive symptoms (OR 1.05, 95% CI 0.98–1.11; P = 0.15). Results did not change markedly after additional adjustment for heart failure, partnership status or the inflammatory biomarker C-reactive protein. Both, self-reported physical health status, very good/good versus fair/bad, (OR 0.54, 95% CI 0.41–0.70; P<0.001) and mental health status (OR 0.61 (0.46–0.82); P = 0.0012) were associated with atrial fibrillation in multivariable-adjusted models.Conclusions
In a population-based sample we observed a higher burden of depressive symptoms driven by somatic symptom dimensions in individuals with atrial fibrillation. Depression was associated with a worse perception of physical or mental health status. Whether screening and treatment of depressive symptoms modulates disease progression and outcome needs to be shown. 相似文献14.
Yihui Li Wenyuan Ding Hua Wang Nianpeng Song Leyu Lin Zhihao Wang Ming Zhong Yun Zhang Wei Zhang 《PloS one》2013,8(10)
Background
The CHADS2/CHA2DS2-VASc scores are used to predict thrombo-embolic/stroke in patients with nonvalvular atrial fibrillation (AF). Nevertheless, limited data are available regarding the association between these risk stratification for stroke and left atrial (LA) remodeling status of AF patients. The purpose of this study was to explore the association between these scores and LA remodeling status assessed quantificationally by echocardiography in AF patients.Methods
One hundred AF patients were divided into 3 groups based on the CHA2DS2-VASc/CHADS2 score: the score of 0 (low stroke risk), the score of 1 (moderate stroke risk) and the score of ≥2 (high stroke risk). All patients were performed through conventional and velocity vector imaging echocardiography. Echocardiographic parameters: maximum LA volume index (LAVImax), LA total emptying fraction (LAEFt) and LA mean strain were obtained to assess quantificationally LA remodeling status.Results
On categorizing with CHA2DS2-VASc, the score of 1 group showed augment in LAVImax and attenuation in LA mean strain derived from VVI, compared with the score of 0 group (LAVImax: 40.27±21.91 vs. 26.79±7.87, p=0.002; LA mean strain: 15.18±6.36 vs. 22±8.54, p=0.001). On categorizing with the CHADS2 score, similar trends were seen between the score of ≥2 and 1 groups (LAVImax: 43.72±13.77 vs. 31.41±9.50, p<0.001; LA mean strain: 11.01±5.31 vs. 18.63±7.00, p<0.001). With multivariate logistic regression, LAVImax (odds ratio: 0.92 , 95% C=I: 0.85 to 0.98, p= 0.01) and LA mean strain reflecting LA remodeling (odds ratio: 1.10, 95% CI: 1.02 to 1.19, p=0.01) were strongly predictive of the CHA2DS2-VASc score of 0.Conclusions
The superiority of the CHADS2 score may lay in identifying LA remodeling of AF patients with high stroke risk. Whereas, the CHA2DS2-VASc score was better than the CHADS2 score at identifying LA remodeling of AF patients presenting low stroke risk. 相似文献15.
目的:探讨N-乙酰半胱氨酸(NAC)对犬心房快速起搏电重构的影响。方法:取16只犬,随机分为对照组和NAC干预组。NAC组按照15mg/kg/d剂量给予NAC口服6周时间。在犬右房置入电极,快速起搏右心房,诱发房颤并维持2小时。在起搏前后分别测定有效不应期(AERP)。结果:房颤后对照组AERP显著缩短,AERP频率适应性下降(P<0.05);而NAC组房颤前后AERP和AERP频率适应性均无明显变化。结论:在心房快速起搏致房颤2h的模型中,NAC对心房电重构具有明显的保护作用。 相似文献
16.
17.
18.
Vincenzo Russo Anna Rago Bruno Pannone Andrea Antonio Papa Maria Carolina Mayer Anna Spasiano Raffaele Calabro Maria Giovanna Russo Nigro Gerardo 《Indian pacing and electrophysiology journal》2014,14(3):121-132
Background
Paroxysmal atrial tachyarrhythmias frequently occur in beta-thalassemia major (β-TM) patients.The aim of our study was to investigate the role of maximum P-wave duration (P max) and dispersion (PD), calculated trough a new manually performed measurement with the use of computer software from all 12-ECG-leads,as predictors of atrial-fibrillation (AF) in β-TM patients with conserved systolic or diastolic cardiac function during a twelve-months follow-up.Materials and Methods
50 β-TM-patients (age38.4±10.1; 38M) and 50-healthy subjects used as controls, matched for age and gender, were studied for the occurrence of atrial arrhythmias during a 1-year follow-up, through ECG-Holter-monitoring performed every three months. The β-TM-patients were divided into two groups according to number and complexity of premature-supraventricular-complexes at the Holter-Monitoring (Group1: <30/h and no repetitive forms, n:35; Group2: >30/h or couplets, or run of supraventricular tachycardia and AF, n:15).Results
Compared to the healthy control-group, β-TM patients presented increased P-max (107.5± 21.2 vs 92.1±11ms, P=0.03) and PD-values (41.2±13 vs 25.1±5 ms,P=0.03). In the β-TM population, the Group2 showed a statistically significant increase in PD (42.8±8.6 vs 33.2±6.5ms, P<0.001) and P-max (118.1±8.7 vs 103.1±7.5ms, P<0.001) compared to the Group1. Seven β-TM patients who showed paroxysmal AF during this study had significantly increased P-max and PD than the other patients of the Group2. Moreover, P-max (OR:2.01; CI:1.12-3.59; P=0.01) and PD (OR=2.06;CI:1.17-3.64;P=0.01) demonstrated a statistically significant association with the occurrence of paroxysmal AF,P min was not associated with AF-risk (OR=0.99; CI:0.25-3.40; P=0.9) in β-TM-patients. A cut-off value of 111ms for P-max had a sensitivity of 80% and a specificity of 87%, a cut-off value of 35.5ms for PD had a sensitivity of 90% and a specificity of 85% in identifying β-TM patients at risk for AF.Conclusion
Our results indicate that P-max and PD are useful electrocardiographic markers for identifying the β-TM-high-risk patients for AF onset, even when the cardiac function is conserved. 相似文献19.
目的:探讨N-乙酰半胱氨酸(NAC)对犬心房快速起搏电重构的影响。方法:取16只犬,随机分为对照组和NAC干预组。NAC组按照15mg/kg/d剂量给予NAC口服6周时间。在犬右房置入电极,快速起搏右心房,诱发房颤并维持2小时。在起搏前后分别测定有效不应期(AERP)。结果:房颤后对照组AERP显著缩短,AERP频率适应性下降(P〈0.05);而NAC组房颤前后AERP和AERP频率适应性均无明显变化。结论:在心房快速起搏致房颤2h的模型中,NAC对心房电重构具有明显的保护作用。 相似文献
20.
Monocytes and their progeny, macrophages (MPhs), play the leading role in the innate immunity and populate different tissues maintaining homeostasis. In addition, these cells are involved in the response to injury when they accumulate in significant numbers at inflammatory sites. As well as macrophages, multipotent mesenchymal stromal cells (MSCs) are a critical component of both physiological and emerging regenerative microenvironment. Reciprocal effects of resident stromal and recruited blood-borne cells orchestrate cellular reactions in the tissues. Hypoxia, a significant reduction in the O2 concentration, is a characteristic feature of the compromised microenvironment. The present review analyzes the current concepts of the role of MSC interaction with MPhs in physiological and reparative tissue remodeling, modulation of MSC and MPh functions under acute hypoxic stress and discusses how oxygen deprivation can affect the outcome of MSC–MPh interplay. 相似文献