首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.  相似文献   

2.
Dendritic spines are small, mushroom-like protrusions from the arbor of a neuron in the central nervous system. Interdependent changes in the morphology, biochemistry, and activity of spines have been associated with learning and memory. Moreover, post-mortem cortices from patients with Alzheimer’s or Parkinson’s disease exhibit biochemical and physical alterations within their dendritic arbors and a reduction in the number of dendritic spines. For over a decade, experimentalists have observed perforations in postsynaptic densities on dendritic spines after induction of long-term potentiation, a sustained enhancement of response to a brief electrical or chemical stimulus, associated with learning and memory. In more recent work, some suggest that activity-dependent intraspine calcium may regulate the surface area of the spine head, and reorganization of postsynaptic densities on the surface. In this paper, we develop a model of a dendritic spine with the ability to partition its transmission and receptor zones, as well as the entire spine head. Simulations are initially performed with fixed parameters for morphology to study electrical properties and identify parameters that increase efficacy of the synaptic connection. Equations are then introduced to incorporate calcium as a second messenger in regulating continuous changes in morphology. In the model, activity affects compartmental calcium, which regulates spine head morphology. Conversely, spine head morphology affects the level of local activity, whether the spines are modeled with passive membrane properties, or excitable membrane using Hodgkin–Huxley kinetics. Results indicate that merely separating the postsynaptic receptors on the surface of the spine may add to the diversity of circuitry, but does not change the efficacy of the synapse. However, when the surface area of the spine is a dynamic variable, efficacy of the synapse may vary continuously over time.  相似文献   

3.
Alterations in synaptic strength are proposed to underlie learning and memory, and two major mechanisms utilised by neurons to bring about such changes involve regulating the number of AMPARs found at the synaptic plasma membrane, and altering the size and/or shape of the specialised postsynaptic compartment, the dendritic spine. It is now well-established that control of receptor number is brought about by precise modulation of vesicle trafficking, although the details of this crucial process are still far from clear. Regulation of spine size involves dynamic alterations in the spine actin cytoskeleton, but recent studies suggest that trafficking events may also play a role. In this review, I will summarise some recent findings about AMPAR trafficking pathways, and highlight the idea that membrane trafficking events not only regulate the complement of AMPARs at the synaptic plasma membrane, but also contribute to spine morphogenesis, either by regulating the plasma membrane content of spines, or as a result of changes in AMPAR trafficking.  相似文献   

4.
The prevailing view at present is that postsynaptic expression of the classical NMDA receptor-dependent long-term potentiation relies on an increase in the numbers of local AMPA receptors (AMPARs). This is thought to parallel an expansion of postsynaptic cell specializations, for instance dendritic spine heads, which accommodate synaptic receptor proteins. However, glutamate released into the synaptic cleft can normally activate only a hotspot of low-affinity AMPARs that occur in the vicinity of the release site. How the enlargement of the AMPAR pool is causally related to the potentiated AMPAR current remains therefore poorly understood. To understand possible scenarios of postsynaptic potentiation, here we explore a detailed Monte Carlo model of the typical small excitatory synapse. Simulations suggest that approximately 50% increase in the synaptic AMPAR current could be provided by expanding the existing AMPAR pool at the expense of 100–200% new AMPARs added at the same packing density. Alternatively, reducing the inter-receptor distances by only 30–35% could achieve a similar level of current potentiation without any changes in the receptor numbers. The NMDA receptor current also appears sensitive to the NMDA receptor crowding. Our observations provide a quantitative framework for understanding the ‘resource-efficient’ ways to enact use-dependent changes in the architecture of central synapses.  相似文献   

5.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

6.
Sala C  Piëch V  Wilson NR  Passafaro M  Liu G  Sheng M 《Neuron》2001,31(1):115-130
The Shank family of proteins interacts with NMDA receptor and metabotropic glutamate receptor complexes in the postsynaptic density (PSD). Targeted to the PSD by a PDZ-dependent mechanism, Shank promotes the maturation of dendritic spines and the enlargement of spine heads via its ability to recruit Homer to postsynaptic sites. Shank and Homer cooperate to induce accumulation of IP3 receptors in dendritic spines and formation of putative multisynapse spines. In addition, postsynaptic expression of Shank enhances presynaptic function, as measured by increased minifrequency and FM4-64 uptake. These data suggest a central role for the Shank scaffold in the structural and functional organization of the dendritic spine and synaptic junction.  相似文献   

7.
Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP   总被引:16,自引:0,他引:16  
Pak DT  Yang S  Rudolph-Correia S  Kim E  Sheng M 《Neuron》2001,31(2):289-303
The PSD-95/SAP90 family of scaffold proteins organizes the postsynaptic density (PSD) and regulates NMDA receptor signaling at excitatory synapses. We report that SPAR, a Rap-specific GTPase-activating protein (RapGAP), interacts with the guanylate kinase-like domain of PSD-95 and forms a complex with PSD-95 and NMDA receptors in brain. In heterologous cells, SPAR reorganizes the actin cytoskeleton and recruits PSD-95 to F-actin. In hippocampal neurons, SPAR localizes to dendritic spines and causes enlargement of spine heads, many of which adopt an irregular appearance with putative multiple synapses. Dominant negative SPAR constructs cause narrowing and elongation of spines. The effects of SPAR on spine morphology depend on the RapGAP and actin-interacting domains, implicating Rap signaling in the regulation of postsynaptic structure.  相似文献   

8.
Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.  相似文献   

9.
The delivery of neurotransmitter receptors into the synaptic membrane is essential for synaptic function and plasticity. However, the molecular mechanisms of these specialized trafficking events and their integration with the intracellular membrane transport machinery are virtually unknown. Here, we have investigated the role of the Rab family of membrane sorting proteins in the late stages of receptor trafficking into the postsynaptic membrane. We have identified Rab8, a vesicular transport protein associated with trans-Golgi network membranes, as a critical component of the cellular machinery that delivers AMPA-type glutamatergic receptors (AMPARs) into synapses. Using electron microscopic techniques, we have found that Rab8 is localized in close proximity to the synaptic membrane, including the postsynaptic density. Electrophysiological studies indicated that Rab8 is necessary for the synaptic delivery of AMPARs during plasticity (long-term potentiation) and during constitutive receptor cycling. In addition, Rab8 is required for AMPAR delivery into the spine surface, but not for receptor transport from the dendritic shaft into the spine compartment or for delivery into the dendritic surface. Therefore, Rab8 specifically drives the local delivery of AMPARs into synapses. These results demonstrate a new role for the cellular secretory machinery in the control of synaptic function and plasticity directly at the postsynaptic membrane.  相似文献   

10.
AMPA receptor trafficking in dendritic spines is emerging as a major postsynaptic mechanism for the expression of plasticity at glutamatergic synapses. AMPA receptors within a spine are in a continuous state of flux, being exchanged with local intracellular pools via exo/endocytosis and with the surrounding dendrite via lateral membrane diffusion. This suggests that one cannot treat a single spine in isolation. Here we present a model of AMPA receptor trafficking between multiple dendritic spines distributed along the surface of a dendrite. Receptors undergo lateral diffusion within the dendritic membrane, with each spine acting as a spatially localized trap where receptors can bind to scaffolding proteins or be internalized through endocytosis. Exocytosis of receptors occurs either at the soma or at sites local to dendritic spines via constitutive recycling from intracellular pools. We derive a reaction–diffusion equation for receptor trafficking that takes into account these various processes. Solutions of this equation allow us to calculate the distribution of synaptic receptor numbers across the population of spines, and hence determine how lateral diffusion contributes to the strength of a synapse. A number of specific results follow from our modeling and analysis. (1) Lateral membrane diffusion alone is insufficient as a mechanism for delivering AMPA receptors from the soma to distal dendrites. (2) A source of surface receptors at the soma tends to generate an exponential-like distribution of receptors along the dendrite, which has implications for synaptic democracy. (3) Diffusion mediates a heterosynaptic interaction between spines so that local changes in the constitutive recycling of AMPA receptors induce nonlocal changes in synaptic strength. On the other hand, structural changes in a spine following long term potentiation or depression have a purely local effect on synaptic strength. (4) A global change in the rates of AMPA receptor exo/endocytosis is unlikely to be the sole mechanism for homeostatic synaptic scaling. (5) The dynamics of AMPA receptor trafficking occurs on multiple timescales and varies according to spatial location along the dendrite. Understanding such dynamics is important when interpreting data from inactivation experiments that are used to infer the rate of relaxation to steady-state.  相似文献   

11.
Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing glutamate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH(2) terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function.  相似文献   

12.
Excitatory glutamatergic synapses at dendritic spines exchange and modulate their receptor content via lateral membrane diffusion. Several studies have shown that the thin spine neck impedes the access of membrane and solute molecules to the spine head. However, it is unclear whether the spine neck geometry alone restricts access to dendritic spines or if a physical barrier to the diffusion of molecules exists. Here, we investigated whether a complex of septin cytoskeletal GTPases localized at the base of the spine neck regulates diffusion across the spine neck. We found that, during development, a marker of the septin complex, Septin7 (Sept7), becomes localized to the spine neck where it forms a stable structure underneath the plasma membrane. We show that diffusion of receptors and bulk membrane, but not cytoplasmic proteins, is slower in spines bearing Sept7 at their neck. Finally, when Sept7 expression was suppressed by RNA interference, membrane molecules explored larger membrane areas. Our findings indicate that Sept7 regulates membrane protein access to spines.  相似文献   

13.
Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid β (Aβ) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Aβ oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.  相似文献   

14.
Since AMPA receptors are major molecular players in both short- and long-term plasticity, it is important to identify the time-scales of and factors affecting the lateral diffusion of AMPARs on the dendrite surface. Using a mathematical model, we study how the dendritic spine morphology affects two processes: (1) compartmentalization of the surface receptors in a single spine to retain local chemistry and (2) the delivery of receptors to the post-synaptic density (PSD) of spines via lateral diffusion following insertion onto the dendrite shaft. Computing the mean first passage time (MFPT) of surface receptors on a sample of real spine morphologies revealed that a constricted neck and bulbous head serve to compartmentalize receptors, consistent with previous works. The residence time of a Brownian diffusing receptor on the membrane of a single spine was computed to be ~ 5 s. We found that the location of the PSD corresponds to the location at which the maximum MFPT occurs, the position that maximizes the residence time of a diffusing receptor. Meanwhile, the same geometric features of the spine that compartmentalize receptors inhibit the recruitment of AMPARs via lateral diffusion from dendrite insertion sites. Spines with narrow necks will trap a smaller fraction of diffusing receptors in the their PSD when considering competition for receptors between the spines, suggesting that ideal geometrical features involve a tradeoff depending on the intent of compartmentalizing the current receptor pool or recruiting new AMPARs in the PSD. The ultimate distribution of receptors among the spine PSDs by lateral diffusion from the dendrite shaft is an interplay between the insertion location and the shape and locations of both the spines and their PSDs. The time-scale for delivery of receptors to the PSD of spines via lateral diffusion was computed to be ~ 60 s.  相似文献   

15.

Background

In brain, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can induce long-lasting changes in synaptic α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor (AMPAR) levels. These changes are believed to underlie the expression of several forms of synaptic plasticity, including long-term potentiation (LTP). Such plasticity is generally believed to reflect the regulated trafficking of AMPARs within dendritic spines. However, recent work suggests that the movement of molecules and organelles between the spine and the adjacent dendritic shaft can critically influence synaptic plasticity. To determine whether such movement is strictly required for plasticity, we have developed a novel system to examine AMPAR trafficking in brain synaptosomes, consisting of isolated and apposed pre- and postsynaptic elements.

Methodology/Principal Findings

We report here that synaptosomes can undergo LTP-like plasticity in response to stimuli that mimic synaptic NMDAR activation. Indeed, KCl-evoked release of endogenous glutamate from presynaptic terminals, in the presence of the NMDAR co-agonist glycine, leads to a long-lasting increase in surface AMPAR levels, as measured by [3H]-AMPA binding; the increase is prevented by an NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). Importantly, we observe an increase in the levels of GluR1 and GluR2 AMPAR subunits in the postsynaptic density (PSD) fraction, without changes in total AMPAR levels, consistent with the trafficking of AMPARs from internal synaptosomal compartments into synaptic sites. This plasticity is reversible, as the application of AMPA after LTP depotentiates synaptosomes. Moreover, depotentiation requires proteasome-dependent protein degradation.

Conclusions/Significance

Together, the results indicate that the minimal machinery required for LTP is present and functions locally within isolated dendritic spines.  相似文献   

16.
Bats C  Groc L  Choquet D 《Neuron》2007,53(5):719-734
Accumulation of AMPA receptors at synapses is a fundamental feature of glutamatergic synaptic transmission. Stargazin, a member of the TARP family, is an AMPAR auxiliary subunit allowing interaction of the receptor with scaffold proteins of the postsynaptic density, such as PSD-95. How PSD-95 and Stargazin regulate AMPAR number in synaptic membranes remains elusive. We show, using single quantum dot and FRAP imaging in live hippocampal neurons, that exchange of AMPAR by lateral diffusion between extrasynaptic and synaptic sites mostly depends on the interaction of Stargazin with PSD-95 and not upon the GluR2 AMPAR subunit C terminus. Disruption of interactions between Stargazin and PSD-95 strongly increases AMPAR surface diffusion, preventing AMPAR accumulation at postsynaptic sites. Furthermore, AMPARs and Stargazin diffuse as complexes in and out synapses. These results propose a model in which the Stargazin-PSD-95 interaction plays a key role to trap and transiently stabilize diffusing AMPARs in the postsynaptic density.  相似文献   

17.
Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.  相似文献   

18.
树突棘是神经元树突上的功能性突起结构,通常作为突触后成份与投射来的轴突共同构成完整的突触连接。树突棘的形态与结构具有明显的可塑性,其变化通常会引起突触功能的改变。Eph受体酪氨酸激酶家族分子与其配体ephrin都是重要的神经导向因子,同时对树突棘结构也有直接的调控作用。Eph受体的活化可以促进树突棘的发生并影响树突棘的形态及内部结构;而Eph受体的异常也往往会损害正常的突触功能,甚至导致许多与树突棘结构异常相关的神经系统病变的发生。  相似文献   

19.
Dendritic spines of medium spiny neurons represent an essential site of information processing between NMDA and dopamine receptors in striatum. Even if activation of NMDA receptors in the striatum has important implications for synaptic plasticity and disease states, the contribution of specific NMDA receptor subunits still remains to be elucidated. Here, we show that treatment of corticostriatal slices with NR2A antagonist NVP-AAM077 or with NR2A blocking peptide induces a significant increase of spine head width. Sustained treatment with D1 receptor agonist (SKF38393) leads to a significant decrease of NR2A-containing NMDA receptors and to a concomitant increase of spine head width. Interestingly, co-treatment of corticostriatal slices with NR2A antagonist (NVP-AAM077) and D1 receptor agonist augmented the increase of dendritic spine head width as obtained with SKF38393. Conversely, NR2B antagonist (ifenprodil) blocked any morphological effect induced by D1 activation. These results indicate that alteration of NMDA receptor composition at the corticostriatal synapse contributes not only to the clinical features of disease states such as experimental parkinsonism but leads also to a functional and morphological outcome in dendritic spines of medium spiny neurons.  相似文献   

20.
Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca) imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs) on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK) channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号