首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal cells in the nasal epithelium (olfactory and airway epithelia) are stem/progenitor cells that are capable of dividing, renewing and differentiating into specialized cells. These stem cells can sense their biophysical microenvironment, but the underlying mechanism of this process remains unknown. Here, we demonstrate the prominent expression of the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+-permeable channel that is known to act as a sensor for hypo-osmotic and mechanical stresses, in the basal cells of the mouse nasal epithelium. TRPV4 mRNA was expressed in the basal portions of the prenatal mouse nasal epithelium, and this expression continued into adult mice. The TRPV4 protein was also detected in the basal layers of the nasal epithelium in wild-type but not in TRPV4-knockout (TRPV4-KO) mice. The TRPV4-positive immunoreactions largely overlapped with those of keratin 14 (K14), a marker of basal cells, in the airway epithelium, and they partially overlapped with those of K14 in the olfactory epithelium. Ca2+ imaging analysis revealed that hypo-osmotic stimulation and 4α-phorbol 12,13 didecanoate (4α-PDD), both of which are TRPV4 agonists, caused an increase in the cytosolic Ca2+ concentration in a subset of primary epithelial cells cultured from the upper parts of the nasal epithelium of the wild-type mice. This response was barely noticeable in cells from similar parts of the epithelium in TRPV4-KO mice. Finally, there was no significant difference in BrdU-labeled proliferation between the olfactory epithelia of wild-type and TRPV4-KO mice under normal conditions. Thus, TRPV4 channels are functionally expressed in basal cells throughout the nasal epithelium and may act as sensors for the development and injury-induced regeneration of basal stem cells.  相似文献   

2.
TRPV channels as temperature sensors   总被引:13,自引:0,他引:13  
The past year has seen a doubling in the number of heat-sensitive ion channels to six, and four of these channels are from the TRPV family. These channels characteristically have Q(10) values of >10 above the thermal threshold, very different from the Q(10) values of 1.5-2.0 seen in most ion channels. Cells expressing TRPV1 show similar temperature sensitivity to small capsaicin-sensitive nociceptor neurons, consistent with these neurons expressing homomers of TRPV1. A-delta fibres exhibit properties that may be explained by TRPV2 containing channels which is present in large diameter sensory neurons that do not express TRPV1. TRPV3 has a lower temperature threshold and may contribute to warm-sensitive channels together with TRPV1. Warm sensation may also be transduced by TRPV4 expressing sensory neurons and hypothalamic neurons. We can now look forward to further work defining the properties of the recombinant channels in more detail and a re-analysis of endogenous i(heat) currents in thermosensitive neurons and other cells. Data from the study of mice in which TRPV2, TRPV3 or TRPV4 have been deleted are also eagerly awaited.  相似文献   

3.
The recent cloning of the special calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid channels) has provided a molecular basis for studying previously unidentified calcium influx channels in electrically nonexcitable cells. In the present work using RT-PCR, we obtained the endogenous expression of mRNAs of genes trpv5 and trpv6 in lymphoblast leukemia Jurkat cells and in normal human T lymphocytes. Additionally, by immunoblotting, the presence of the channel-forming TRPV5 proteins has been shown both in the total lysate and in crude membrane fractions from Jurkat cells and normal T lymphocytes. The use of immunoprecipitation revealed TRPV6 proteins in Jurkat cells, whereas in normal T lymphocytes, this protein was not detected. The expression pattern and the selective Ca2+ permeation properties of TRPV5 and TRPV6 channels indicate the important role of these channels in Ca2+ homeostasis, as well as most likely in malignant transformation of blood cells.  相似文献   

4.
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave kon = 13 x 106 M?1s?1 and koff = 1609 sec?1 with KD = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a KD = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.  相似文献   

5.
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave kon = 13 x 106 M−1s−1 and koff = 1609 sec−1 with KD = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a KD = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.  相似文献   

6.
神经生长因子对脑缺血后神经元的存活有重要意义。该研究观察了TRPV2激活剂2APB对体外缺血再灌注模型中原代培养大鼠大脑皮层星形胶质细胞神经生长因子释放的影响。将原代培养大鼠大脑皮层星形胶质细胞分为2APB组(0.5mmol/L)和对照组(不含2APB),在糖氧剥夺情况下培养2h,然后恢复正常全培养基复氧培养48h。用Westem blot检测星形胶质细胞神经生长因子的表达水平;用ELISA检测星形胶质细胞条件培养液中神经生长因子的含量。结果表明,0.5mmol/L2APB可以诱导正常情况下及糖氧剥夺再灌注情况下体外培养星形胶质细胞NGF的合成和释放LP〈0.01)。此外,JNK阻滞剂可抑制糖氧剥夺再灌注情况下2APB诱导的星形胶质细胞神经生长因子的释放。综上.TRPV2激活可以影响糖氧剥夺再灌注情况下体外培养星形胶质细胞神经生长因子的合成和释放。TRPV2有可能成为脑缺血再灌注后的潜在治疗靶点。  相似文献   

7.
Duchenne myopathy is a lethal disease due to the absence of dystrophin, a cytoskeletal protein. Muscles from dystrophin-deficient mice (mdx) typically present an exaggerated susceptibility to eccentric work characterized by an important force drop and an increased membrane permeability consecutive to repeated lengthening contractions. The present study shows that mdx muscles are largely protected from eccentric work-induced damage by overexpressing a dominant negative mutant of TRPV2 ion channel. This observation points out the role of TRPV2 channel in the physiopathology of Duchenne muscular dystrophy.  相似文献   

8.
《Molecular membrane biology》2013,30(5-6):315-326
Abstract

Epidemiological studies indicate that patients suffering from atherosclerosis are predisposed to develop osteoporosis. Accordingly, atherogenic determinants such as oxidized low density lipoprotein (OxLDL) particles have been shown to alter bone cell functions. In this work, we investigated the cytotoxicity of lysophosphatidylcholine (lysoPC), a major phospholipid component generated upon LDL oxidation, on bone-forming MG-63 osteoblast-like cells. Cell viability was reduced by lysoPC in a concentration-dependent manner with a LC50 of 18.7 ± 0.7 μM. LysoPC-induced cell death was attributed to induction of both apoptosis and necrosis. Since impairment of intracellular calcium homeostasis is often involved in mechanism of cell death, we determined the involvement of calcium in lysoPC-induced cytotoxicity. LysoPC promoted a rapid and transient increase in intracellular calcium attributed to mobilization from calcium stores, followed by a sustained influx. Intracellular calcium mobilization was associated to phospholipase C (PLC)-dependent mobilization of calcium from the endoplasmic reticulum since inhibition of PLC or calcium depletion of reticulum endoplasmic with thapsigargin prevented the calcium mobilization. The calcium influx induced by lysoPC was abolished by inhibition of transient receptor potential vanilloid (TRPV) channels with ruthenium red whereas gadolinium, which inhibits canonical TRP (TRPC) channels, was without effect. Accordingly, expression of TRPV2 and TRPV4 were shown in MG-63 cells. The addition of TRPV2 inhibitor Tranilast in the incubation medium prevent the calcium influx triggered by lysoPC and reduced lysoPC-induced cytotoxicity whereas TRPV4 inhibitor RN 1734 was without effect, which confirms the involvement of TRPV2 activation in lysoPC-induced cell death.  相似文献   

9.
10.
The transient receptor potential, sub-family Vanilloid (TRPV)(2) cation channel is activated in response to extreme temperature elevations in sensory neurons. However, TRPV2 is widely expressed in tissues with no sensory function, including cells of the immune system. Regulation of GRC, the murine homolog of TRPV2 has been studied in insulinoma cells and myocytes. GRC is activated in response to certain growth factors and neuropeptides, via a mechanism that involves regulated access of the channel to the plasma membrane. This is likely to be an important primary control mechanism for TRPV2 outside the CNS. Here, we report that a regulated trafficking step controls the access of TRPV2 to the cell surface in mast cells. In mast cells, elevations in cytosolic cAMP are sufficient to drive plasma membrane localization of TRPV2. We have previously proposed that the recombinase gene activator protein (RGA), a four-transmembrane domain, intracellular protein, associates with TRPV2 during the biosynthesis and early trafficking of the channel. We use a polyclonal antibody to RGA to confirm the formation of a physiological complex between RGA and TRPV2. Finally, we show that over-expression of the RGA protein potentiates the basal surface localization of TRPV2. We propose that trafficking and activation mechanisms intersect for TRPV2, and that cAMP mobilizing stimuli may regulate TRPV2 localization in non-sensory cells. RGA participates in the control of TRPV2 surface levels, and co-expression of RGA may be a key component of experimental systems that seek to study TRPV2 physiology.  相似文献   

11.
12.
Transient Receptor Potential channels from the vanilloid subfamily (TRPV) are a group of cation channels modulated by a variety of endogenous stimuli as well as a range of natural and synthetic compounds. Their roles in human health make them of keen interest, particularly from a pharmacological perspective. However, despite this interest, the complexity of these channels has made it difficult to obtain high resolution structures until recently. With the cryo-EM resolution revolution, TRPV channel structural biology has blossomed to produce dozens of structures, covering every TRPV family member and a variety of approaches to examining channel modulation. Here, we review all currently available TRPV structures and the mechanistic insights into gating that they reveal.  相似文献   

13.
Increased expression of specific calcium channels in some cancers and the role of calcium signaling in proliferation and invasion have led to studies assessing calcium channel inhibitors as potential therapies for some cancers. The use of channel activators to promote death of cancer cells has been suggested, but the risk of activators promoting cancer cell proliferation and the importance of the degree of channel over-expression is unclear. We developed an MCF-7 breast cancer cell line with inducible TRPV1 overexpression and assessed the role of TRPV1 levels on cell death mediated by the TRPV1 activator capsaicin and the potential for submaximal activation to promote proliferation. The TRPV1 level was a determinant of cell death induced by capsaicin. A concentration response curve with varying TRPV1 expression levels identified the minimum level of TRPV1 required for capsaicin induced cell death. At no level of TRPV1 over-expression or capsaicin concentration did TRPV1 activation enhance proliferation. Cell death induced by capsaicin was necrotic and associated with up-regulation of c-Fos and RIP3. These studies suggest that activators of specific calcium channels may be an effective way to induce necrosis and that this approach may not always be associated with enhancement of cancer cell proliferation.  相似文献   

14.
The Ca2+-selective tetrameric Transient Receptor Potential Vanilloid 6 (TRPV6) channel is an inwardly rectifying ion channel. The constitutive current endures Ca2+-induced inactivation as a result of the activation of phospholipase C followed depletion of phosphatidylinositol 4,5-bisphosphate, and calmodulin binding. Replacing a glycine residue within the cytosolic S4-S5 linker of the human TRPV6 protein, glycine 516, which is conserved in all TRP channel proteins, by a serine residue forces the channels into an open conformation thereby enhancing constitutive Ca2+ entry and preventing inactivation. Introduction of a second mutation (T621A) into TRPV6G516S reduces constitutive activity and partially rescues the TRPV6 function. According to the recently revealed crystal structure of the rat TRPV6 the T621 is adjacent to the distal end of the transmembrane segment 6 (S6) within a short linker between S6 and the helix formed by the TRP domain. These results indicate that the S4-S5 linker and the S6-TRP-domain linker are critical constituents of TRPV6 channel gating and that disturbance of their sequences foster constitutive Ca2+ entry.  相似文献   

15.
Although a large number of ion channels are now believed to be regulated by phosphoinositides, particularly phosphoinositide 4,5-bisphosphate (PIP2), the mechanisms involved in phosphoinositide regulation are unclear. For the TRP superfamily of ion channels, the role and mechanism of PIP2 modulation has been especially difficult to resolve. Outstanding questions include: is PIP2 the endogenous regulatory lipid; does PIP2 potentiate all TRPs or are some TRPs inhibited by PIP2; where does PIP2 interact with TRP channels; and is the mechanism of modulation conserved among disparate subfamilies? We first addressed whether the PIP2 sensor resides within the primary sequence of the channel itself, or, as recently proposed, within an accessory integral membrane protein called Pirt. Here we show that Pirt does not alter the phosphoinositide sensitivity of TRPV1 in HEK-293 cells, that there is no FRET between TRPV1 and Pirt, and that dissociated dorsal root ganglion neurons from Pirt knock-out mice have an apparent affinity for PIP2 indistinguishable from that of their wild-type littermates. We followed by focusing on the role of the C terminus of TRPV1 in sensing PIP2. Here, we show that the distal C-terminal region is not required for PIP2 regulation, as PIP2 activation remains intact in channels in which the distal C-terminal has been truncated. Furthermore, we used a novel in vitro binding assay to demonstrate that the proximal C-terminal region of TRPV1 is sufficient for PIP2 binding. Together, our data suggest that the proximal C-terminal region of TRPV1 can interact directly with PIP2 and may play a key role in PIP2 regulation of the channel.  相似文献   

16.
Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem.  相似文献   

17.
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity.  相似文献   

18.
Calcium is a universal signal, and its capacity to encode intracellular messages via spatial, temporal and amplitude characteristics allows it to participate in most cellular events. In a specific context, calcium plays a pivotal role in migration, although its role has not been elucidated fully. By using immortalized gonadotropin-releasing hormone-secreting neurons (GN11), we have now investigated the role of TRPV4, a member of the vanilloid family of Ca(2+) channels, in neuronal migration. Our results show that TRPV4 channels are present and functional in GN11 cells and their localization is polarized and enriched in lamellipodial structures. TRPV4 activation leads to a retraction of the lamellipodia and to a decrease in migratory behaviour; moreover cells migrate slower and in a more random manner. We therefore provide evidence for a new regulation of gonadotropin-releasing hormone neurons and a new role for calcium at the leading edge of migratory cells.  相似文献   

19.
制备了微柱名义直径为4μm或10μm,名义间距为4μm或7μm,名义高度为4μm的聚二甲基硅氧烷微柱阵列型拓扑结构基底,研究了HepG2细胞与拓扑结构基底复合后细胞瞬时受体电位通道TRPV1、TRPV4在基因和蛋白水平的表达及其功能响应性。细胞TRPV1和TRPV4在基因水平表达的评价采用定量PCR技术进行;TRPV1和TRPV4在蛋白水平的表达以免疫印迹和免疫荧光染色确认;TRPV1和TRPV4功能响应性的研究系以TRPV1和TRPV4激动剂辣椒素和4α-佛波醇-12,13-二葵酸酯刺激细胞,采用钙离子染料钙绿-1结合激光共聚焦显微技术记录钙内流动态过程,以钙内流荧光响应幅度及阳性响应比率进行评价。实验结果表明,在四种拓扑结构基底上细胞TRPV1和TRPV4的mRNA表达量均显著高于平面基底上相应值。免疫印迹实验证实了TRPV1和TRPV4在蛋白水平的表达,且拓扑结构基底上TRPV1和TRPV4免疫荧光染色强度较之平面基底相应值明显增高或趋于增高。在激动剂作用下,TRPV1介导的钙内流表现为快速去敏感化(25秒内)的瞬态内流,且拓扑结构基底上阳性响应细胞比例或相对荧光响应幅度较之平面基底相应值增高;而拓扑结构基底上细胞TRPV4阳性响应细胞比例和相对荧光响应幅度较之平面基底均全面明显升高。上述结果表明,TRPV介导的离子信号可能是基底拓扑结构优化HepG2细胞功能表型的重要信号机制。  相似文献   

20.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号