首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The permeability of lipid membranes for metabolic molecules or drugs is routinely estimated from the solute’s oil/water partition coefficient. However, the molecular determinants that modulate the permeability in different lipid compositions have remained unclear. Here, we combine scanning electrochemical microscopy and molecular-dynamics simulations to study the effect of cholesterol on membrane permeability, because cholesterol is abundant in all animal membranes. The permeability of membranes from natural lipid mixtures to both hydrophilic and hydrophobic solutes monotonously decreases with cholesterol concentration [Chol]. The same is true for hydrophilic solutes and planar bilayers composed of dioleoyl-phosphatidylcholine or dioleoyl-phosphatidyl-ethanolamine. However, these synthetic lipids give rise to a bell-shaped dependence of membrane permeability on [Chol] for very hydrophobic solutes. The simulations indicate that cholesterol does not affect the diffusion constant inside the membrane. Instead, local partition coefficients at the lipid headgroups and at the lipid tails are modulated oppositely by cholesterol, explaining the experimental findings. Structurally, these modulations are induced by looser packing at the lipid headgroups and tighter packing at the tails upon the addition of cholesterol.  相似文献   

2.
The two parameters usually invoked when discussing transport across membranes are the "diffusion permeability coefficient" and the "hydrodynamic permeability coefficient." In this study the magnitude of these two coefficients is established experimentally for collodion membranes of differing porosities. The hydrodynamic permeability is predominant while convergence of the two permeabilities tends to obtain as the membranes become less coarse. The flux data obtained are used to calculate "average pore diameter" and the meaningfulness of these calculations is interpreted. The relationship between the two coefficients and transport across membranes as treated by the system of irreversible thermodynamics is discussed.  相似文献   

3.
High-field (i.e., 94 GHz) electron paramagnetic resonance is used to characterize the nonaxial ordering of spin-labeled lipid chains in membranes containing cholesterol. Employing high magnetic fields (and microwave frequencies) allows investigation of both the lateral and transverse ordering of the phospholipid chains by cholesterol, from the x-y and z-elements, respectively, of the spin-label g-tensor. Transverse ordering is described by the conventional order parameter, P2(cosβ), where β is the instantaneous inclination of the chain axis to the membrane normal; and lateral ordering is described by the order parameter cos2( − ), where is the azimuthal angle about the chain axis and is the mean azimuthal orientation about which angular fluctuations take place. To obtain high positional resolution, phosphatidylcholines spin labeled at all odd and even positions from n = 4 to n = 14 in the sn-2 chain (1-acyl-2-[n-(4,4′-dimethyloxazolidine-N-oxyl)]stearoyl-sn-glycero-3-phosphocholine) are used at probe amounts in membranes of dimyristoyl phosphatidylcholine containing either high (40 mol %) or low (5 mol %) concentrations of cholesterol. At high-cholesterol content, lateral ordering of the spin-labeled lipid chains is detected over a wide range of temperature throughout the liquid-ordered phase. The transverse profile of lateral -ordering with position, n, of chain labeling follows the profile of the rigid steroid nucleus of cholesterol. It becomes progressively averaged toward the terminal methyl group of the sn-2 chain, in the region of the flexible hydrocarbon chain of cholesterol. At low-cholesterol content, lateral chain ordering is prominent at low temperature, but diminishes at progressively higher chain positions with increasing temperature. The nonaxial lipid ordering may be related to the formation of in-plane lipid domains in membranes containing cholesterol and saturated lipids.  相似文献   

4.
The Coupling of Solute Fluxes in Membranes   总被引:4,自引:4,他引:0  
  相似文献   

5.
6.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.  相似文献   

7.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.  相似文献   

8.
A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, (2)H-NMR and (13)C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 ? away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid-water interface. Addition of cholesterol partially redistributes DHA density from near the lipid-water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C(8)-C(18) is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin.  相似文献   

9.
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14–C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB–sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14–C16 tail PCs and nontoxic (short open) channels with C17–C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2–5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.  相似文献   

10.
Membranes of dead fetuses showed a three-fold increase in permeability to the haemoglobin molecule when compared with normal and stored membranes. The friability of some of these membranes was markedly increased and their strength and elasticity diminished. These findings may be significant in the aetiology of the hypofibrinogenaemia and the increased incidence of amniotic fluid embolism with intrauterine death of the fetus.  相似文献   

11.
Further Observations on Asymmetrical Solute Movement across Membranes   总被引:1,自引:5,他引:1  
The permeability of frog skin under the influence of urea hyperosmolarity has been studied. Flux ratio asymmetry has been demonstrated again for tracer mannitol. The inhibitors DNP, CN-, and ouabain have been used to eliminate active sodium transport and it was found that urea hyperosmolarity produces asymmetrical mannitol fluxes on frog skins having no short-circuit current. These findings suggest that flux ratio asymmetry is due to solute interaction and is unrelated to sodium transport. Studies with a synthetic membrane show clearly that bulk flow of fluid can produce a "solvent drag" effect and change flux ratios. When bulk flow is blocked and solute gradients allowed their full expression, then solute interaction "solute drag" is easily demonstrable in a synthetic system.  相似文献   

12.
13.
Unsaturated lipid oxidation is a fundamental process involved in different aspects of cellular bioenergetics; dysregulation of lipid oxidation is often associated with cell aging and death. To study how lipid oxidation affects membrane biophysics, we used a chlorin photosensitizer to oxidize vesicles of various lipid compositions and degrees of unsaturation in a controlled manner. We observed different shape transitions that can be interpreted as an increase in the area of the targeted membrane followed by a decrease. These area modifications induced by the chemical modification of the membrane upon oxidation were followed in situ by Raman tweezers microspectroscopy. We found that the membrane area increase corresponds to the lipids’ peroxidation and is initiated by the delocalization of the targeted double bonds in the tails of the lipids. The subsequent decrease of membrane area can be explained by the formation of cleaved secondary products. As a result of these area changes, we observe vesicle permeabilization after a time lag that is characterized in relation with the level of unsaturation. The evolution of photosensitized vesicle radius was measured and yields an estimation of the mechanical changes of the membrane over oxidation time. The membrane is both weakened and permeabilized by the oxidation. Interestingly, the effect of unsaturation level on the dynamics of vesicles undergoing photooxidation is not trivial and thus carefully discussed. Our findings shed light on the fundamental dynamic mechanisms underlying the oxidation of lipid membranes and highlight the role of unsaturations on their physical and chemical properties.  相似文献   

14.
A new addition method is described in this study for calculating the partition coefficients of peptides. LogP and logD values of peptides are calculated by summing the contributions of the component amino acids. The final models are derived from a multivariate linear regression analysis of 219 peptides with known experimental data. The standard errors in a leave-one-out cross-validation are 0.23 and 0.24 log units for the logP and logD values, respectively. The predictive ability of the model is tested by an extra set of ten peptides, and the self-consistency of the model is further demonstrated by a new validation procedure called the evolution test. The parameters obtained in regression could be used as hydrophobicity scales for amino acids. The application of such hydrophobicity scales has also been discussed.  相似文献   

15.
We present and discuss the permeability and electrical properties of thin lipid membranes, and the changes induced in these properties by several agents added to the aqueous phases after the membranes have formed. The unmodified membrane is virtually impermeable to ions and small "hydrophilic" solutes, but relatively permeable to water and "lipophilic" molecules. These properties are consistent with those predicted for a thin film of hydrocarbon through which matter is transported by dissolving in the membrane phase and then diffusing through it. The effect of cholesterol in reducing the water and "lipophilic" solute permeability is attributed to an increase of the "viscosity" of the hydrocarbon region, thus reducing the diffusion coefficient of molecules within this phase. The selective permeability of the membrane to iodide (I-) in the presence of iodine (I2) is attributed to the formation of polyiodides (perhaps I5 -), which are presumed to be relatively soluble in the membrane because of their large size, and hence lower surface charge density. Thus, I2 acts as a carrier for I-. The effects of "excitability-inducing material" and the depsipeptides (particularly valinomycin) on ion permeability are reviewed. The effects of the polyene antibiotics (nystatin and amphotericin B) on ion permeability, discussed in greater detail, are the following: (a) membrane conductance increases with the 10th power of nystatin concentration; (b) the membrane is anion-selective but does not discriminate completely between anions and cations; (c) the membrane discriminates among anions on the basis of size; (d) membrane conductance decreases extraordinarily with increasing temperatures. Valinomycin and nystatin form independent conductance pathways in the same membrane, and, in the presence of both, the membrane can be reversibly shifted between a cation and anion permeable state by changes in temperature. It is suggested that nystatin produces pores in the membrane and valinomycin acts as a carrier.  相似文献   

16.
Permeability of Lipid Bilayer Membranes to Organic Solutes   总被引:4,自引:2,他引:4       下载免费PDF全文
A sensitive fluorescence technique was used to measure transport of organic solutes through lipid bilayer membranes and to relate permeability to the functional groups of the solute, lipid composition of the membrane, and pH of the medium. Indole derivatives having ethanol, acetate, or ethylamine in the 3-position, representing neutral, acidic, and basic solutes, respectively, were the primary models. The results show: (a) Neutral solute permeability is not greatly affected by changes in lipid composition but presence or absence of cholesterol in the membranes could greatly alter permeability of the dissociable substrates. (b) Indole acetate permeability was reduced by introduction of phosphatidylserine into membranes to produce a net negative charge on the membranes. (c) Permeability response of dissociable solutes to variation in pH was in the direction predicted but not always of the magnitude expected from changes in the calculated concentrations of the undissociated solute in the bulk aqueous phase. Concentration gradients of amines across the membranes caused substantial diffusion potentials, suggesting that some transport of the cationic form of the amine may occur. It is suggested that factors such as interfacial charge and hydration structure, interfacial polar forces, and lipid organization and viscosity, in addition to the expected solubility-diffusion relations, may influence solute flux.  相似文献   

17.
The present experiments were designed to evaluate coupling of water and nonelectrolyte flows in porous lipid bilayer membranes (i.e., in the presence of amphotericin B) in series with unstirred layers. Alterations in solute flux during osmosis, with respect to the flux in the absence of net water flow, could be related to two factors: first, changes in the diffusional component of solute flux referable to variations in solute concentrations at the membrane interfaces produced by osmotic flow through the unstirred layers; and second, coupling of solute and solvent flows within the membrane phase. Osmotic water flow in the same direction as solute flow increased substantially the net fluxes of glycerol and erythritol through the membranes, while osmotic flow in the opposite direction to glycerol flow reduced the net flux of that solute. The observed effects of osmotic water flow on the fluxes of these solutes were in reasonable agreement with predictions based on a model for coupling of solute and solvent flows within the membrane phase, and considerably in excess of the prediction for a diffusion process alone.  相似文献   

18.
The linear phenomenological equations giving particle and practical fluxes of a single electrolyte across an ion-selective membrane are stated and interrelated. It is shown that the experimental measurements commonly made in biological and synthetic membrane studies may be used, with minor modification, to obtain the phenomenological transport coefficients and their concentration dependences. It is demonstrated that the electrical properties of a homogeneous membrane may be obtained as functions of the bathing solution concentration by combining fluxes measured under open and short circuit. Attention is paid to the use of radiotracers when measuring ionic fluxes. To obtain all the phenomenological coefficients at least one measurement must be made under a pressure gradient. The experimental difficulties in such measurements are discussed and the merits and demerits of various experiments considered. The problems of measuring potentials and concentrations at the low pressure face of a supported membrane make several mathematically simple approaches experimentally unattractive. The best methods appear to be either the measurement of a succession of “apparent osmotic pressures” under concentration differences sufficiently small that the membrane does not require support or the study of “reverse osmosis”. Sets of equations are given which enable the phenomenological coefficients to be evaluated from convenient experiments. With a stable homogeneous membrane nine coefficients may be obtained thus enabling either the applicability of the reciprocal relations or the applicability of linear theory under the conditions of the experiments to be tested. For a discontinuous system the six independent coefficients may be obtained from experiments in a single membrane cell.  相似文献   

19.
20.
The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号