首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

One of the supposed mechanisms that may lead to breast cancer (BC) is an alteration of circadian gene expression and DNA methylation. We undertook an integrated approach to identify methylation pattern of core circadian promoter regions in BC patients with regard to clinical features. We performed a quantitative methylation-specific real-time PCR analysis of a promoter methylation profile in 107 breast tumor and matched non-tumor tissues. A panel of circadian genes CLOCK, BMAL1, PERIOD (PER1, 2, 3), CRYPTOCHROME (CRY1, 2) and TIMELESS as well as their association with clinicopathological characteristics were included in the analysis. Three out of the eight analyzed genes exhibited marked hypermethylation (PER1, 2, 3), whereas CLOCK, BMAL1, CRY2 showed significantly lower promoter CpG methylation in the BC tissues when compared to the non-tumor tissues. Among variously methylated genes we found an association between the elevated methylation level of PERs promoter region and molecular subtypes, histological subtypes and tumor grading of BC. Methylation status may be associated with a gene expression level of circadian genes in BC patients. An aberrant methylation pattern in circadian genes in BC may provide information that could be used as novel biomarkers in clinics and molecular epidemiology as well as play an important role in BC etiology.  相似文献   

2.
3.
4.
5.
Investigating the methylation status of the circadian genes may contribute to a better understanding of the shift work-related circadian disruption in individuals exposed to artificial light at night. In the present study, we determined the methylation status of the circadian genes associated with a shift work pattern among nurses and midwives participating in a cross-sectional study in Lodz, Poland.

Quantitative methylation polymerase chain reaction assays were used to assess promoter CpG methylation in PER1, PER2, PER3, CRY1, CRY2, BMAL1, CLOCK, and NPAS2 in genomic DNA from whole blood of 347 women having a rotating-shift work schedule and 363 women working days only. The percentage of methylated reference (PMR) was assessed using fluorescent probes for PER1, PER2, PER3, CRY1, and NPAS2, and the percentage of gene methylation, as the methylation index (MI), using two sets of primers for BMAL1, CLOCK, and CRY2.

We tested the possible association between current and lifetime rotating night-shift work characteristics and circadian gene methylation by using proportional odds regression model with blood DNA methylation, categorized into tertiles, and adjusted for age, current smoking status, folate intake and blood collection time. The findings indicated that CpG methylation in PER2 promoter was significantly decreased (P < 0.004) among nurses and midwives currently working rotating shifts, as compared with day-working nurses and midwives. The lower percentage of PER2 methylation was associated with a higher monthly frequency of current night duties (2–7 night shifts, and eight or more night shifts per month) (P = 0.012) and was associated at borderline significance (P = 0.092) with the lifetime duration of shift work (>10 ≤ 20 years and >20 ≤ 43 years of rotating-shift work) among nurses and midwives (N = 710). Moreover, women with a longer lifetime duration of shift work presented a lower status of PER1 methylation (P = 0.040) than did the women with up to 10 years of rotating-shift work. Long lifetime duration of shift work (> 10 years) among current rotating night-shift workers (N = 347) was associated with BMAL1 hypomethylation (P = 0.013).

Among eight of the investigated circadian genes, only PER1, PER2, and BMAL1 showed differential methylation attributable to the rotating-shift work of nurses and midwives. The findings on blood-based DNA methylation in the circadian genes may provide a better insight into the mechanistic principles underlying the possible health effects of night-shift work but these should be verified in further studies recruiting larger populations of shift workers.  相似文献   


6.
Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.  相似文献   

7.
8.
9.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

10.
11.
12.
13.
14.
15.
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5′-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5′ upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.  相似文献   

16.
《Chronobiology international》2013,30(9):1180-1194
The circadian clock system instructs 24-h rhythmicity on gene expression in essentially all cells, including adipocytes, and epigenetic mechanisms may participate in this regulation. The aim of this research was to investigate the influence of obesity and metabolic syndrome (MetS) features in clock gene methylation and the involvement of these epigenetic modifications in the outcomes. Sixty normal-weight, overweight and obese women followed a 16-weeks weight reduction program. DNA methylation levels at different CpG sites of CLOCK, BMAL1 and PER2 genes were analyzed by Sequenom's MassARRAY in white blood cells obtained before the treatment. Statistical differences between normal-weight and overweight?+?obese subjects were found in the methylation status of different CpG sites of CLOCK (CpGs 1, 5-6, 8 and 11-14) and, with lower statistical significance, in BMAL1 (CpGs 6-7, 8, 15 and 16-17). The methylation pattern of different CpG sites of the three genes showed significant associations with anthropometric parameters such as body mass index and adiposity, and with a MetS score. Moreover, the baseline methylation levels of CLOCK CpG 1 and PER2 CpGs 2-3 and 25 correlated with the magnitude of weight loss. Interestingly, the percentage of methylation of CLOCK CpGs 1 and 8 showed associations with the intake of monounsaturated and polyunsaturated fatty acids. This study demonstrates for the first time an association between methylation status of CpG sites located in clock genes (CLOCK, BMAL1 and PER2) with obesity, MetS and weight loss. Moreover, the methylation status of different CpG sites in CLOCK and PER2 could be used as biomarkers of weight-loss success, particularly CLOCK CPGs 5-6. (Author correspondence: )  相似文献   

17.
Tumor suppression and circadian function   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号