首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most aerobic organisms are exposed to oxidative stress. Looking for enzyme activities involved in the bacterial response to this kind of stress, we focused on the btuE-encoded Escherichia coli BtuE, an enzyme that shares homology with the glutathione peroxidase (GPX) family. This work deals with the purification and characterization of the btuE gene product.Purified BtuE decomposes in vitro hydrogen peroxide in a glutathione-dependent manner. BtuE also utilizes preferentially thioredoxin A to decompose hydrogen peroxide as well as cumene-, tert-butyl-, and linoleic acid hydroperoxides, confirming that its active site confers non-specific peroxidase activity. These data suggest that the enzyme may have one or more organic hydroperoxide as its physiological substrate.The btuE gene was induced when cells were exposed to oxidative stress elicitors that included potassium tellurite, menadione and hydrogen peroxide, among others, suggesting that BtuE could participate in the E. coli response to reactive oxygen species. To our knowledge, this is the first report describing a glutathione peroxidase in E. coli.  相似文献   

2.
3.
In order to increase the hydrogen yield from glucose, hydrogen production by immobilized Rhodopseudomonas faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria Ethanoligenens harbinense B49 was investigated. The soluble metabolites from dark-fermentation mainly were ethanol and acetate, which could be further utilized for photo-hydrogen production. Hydrogen production by B49 was noticeably affected by the glucose and phosphate buffer concentration. The maximum hydrogen yield (1.83 mol H2/mol glucose) was obtained at 9 g/l glucose. In addition, we found that the ratio of acetate/ethanol (A/E) increased with increasing phosphate buffer concentration, which is favorable to further photo-hydrogen production. The total hydrogen yield during dark- and photo-fermentation reached its maximum value (6.32 mol H2/mol glucose) using 9 g/l glucose, 30 mmol/l phosphate buffers and immobilized R. faecalis RLD-53. Results demonstrated that the combination of dark- and photo- fermentation was an effective and efficient process to improve hydrogen yield from a single substrate.  相似文献   

4.
A correlation between the rate of ATP synthesis by F0F1 ATP synthase and formate oxidation by formate hydrogen lyase (FHL) has been found in inside-out membrane vesicles of the Escherichia coli mutant JW 136 (Δhyahyb) with double deletions of hydrogenases 1 and 2, grown anaerobically on glucose in the absence of external electron acceptors at pH 6.5. ATP synthesis was suppressed by the H+-ATPase inhibitors N,N′-dicyclohexylcarbodiimide, sodium azide, and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Copper ions inhibited formate-dependent hydrogenase and ATP-synthase activities but did not affect the ATPase activity of the vesicles. The maximal rate of ATP synthesis (0.83 μmol/min per mg protein) was determined at simultaneous application of sodium formate, ADP, and inorganic phosphate, and was stimulated by K+ ions. The results confirm the assumption of a dual role of hydrogenase 3, the formate hydrogen lyase subunit that can couple the reduction of protons to H2 and their translocation through membrane with chemiosmotic synthesis of ATP.  相似文献   

5.
6.
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H2/(min mg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.  相似文献   

7.
Candida albicans CDC4 is nonessential and plays a role in suppressing filamentous growth, in contrast to its evolutionary counterparts involved in the G1-S transition of the cell cycle. Genetic epistasis analysis has indicated that proteins besides Sol1 are targets of C. albicans Cdc4. Moreover, no formal evidence suggests that C. albicans Cdc4 functions through the ubiquitin E3 ligase of the Skp1-Cul1/Cdc53-F-box complex. To elucidate the role of C. albicans CDC4, C. albicans Cdc4-associated proteins were sought by affinity purification. A 6×His epitope-tagged C. albicans Cdc4 expressed from Escherichia coli was used in affinity purifications with the cell lysate of C. albicans cdc4 homozygous null mutant. Candida albicans Cdc4 and its associated proteins were resolved by SDS-PAGE and visualized by silver staining. The candidate proteins were recovered and trypsin-digested to generate MALDI-TOF spectra profiles, which were used to search against those of known proteins in the database to reveal their identities. Two out of four proteins encoded by GPH1 and THR1 genes were further verified to interact with C. albicans Cdc4 using a yeast two-hybrid assay. We conclude that in vitro affinity purification using C. albicans Cdc4 generated from E. coli as the bait and proteins from cell lysate of C. albicans cdc4 homozygous null mutant as a source of prey permit the identification of novel proteins that physically interact and functionally associate with C. albicans Cdc4.  相似文献   

8.
Niu K  Zhang X  Tan WS  Zhu ML 《Bioresource technology》2011,102(15):7294-7300
In this work, metabolic flux analysis (MFA) method was used to estimate the effects of the culture conditions on both the producing and uptake hydrogen flux inside the cell of Klebsiella pneumoniae ECU-15. The results indicated that higher temperature could reduce the amount of the uptake hydrogen and enhance the hydrogen production from the NADH pathway. Moreover, both the producing hydrogen flux from formate and the uptake hydrogen flux were attained to the maximum at pH 7.0-7.5. The producing hydrogen flux was higher at 5 g/L initial glucose than that of the other concentrations, and the uptake hydrogen flux showed the minimum value under the same condition. The apparent hydrogen generation was caused by the combined action of producing hydrogenase, uptake hydrogenase and bidirectional hydrogenase. These results were helpful to deeply understand the mechanism of the biohydrogen evolving process and establish the suitable molecular strategies for improving hydrogen production.  相似文献   

9.
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule.  相似文献   

10.
Wb14 of Wuchereria bancrofti, an orthologue of Brugia malayiSXP-1 and W. bancrofti SXP-1, was amplified from genomic DNA of W. bancrofti microfilaria collected from four distant geographical locations in India viz., Vellore, Bhubaneshwar, Pondicherry and Sevagram. The gene was sub-cloned in a prokaryotic vector pRSET and expressed in Escherichia coli as a truncated protein (∼23 kDa). The nucleotide sequence of the gene is 98% similar to that of WbSXP-1 and is found to be intron-less. However, the analysis and comparison of the derived amino acid sequence with WbSXP-1 showed that Wb14 is truncated at amino acid position 153. The distribution of the two genes in the studied four geographical locations indicated that WbSXP-1 is prevalent only in parasite samples from Sevagram while Wb14 is present in parasites from all the other locations. Only a limited polymorphism was observed in both the genes among the parasites from different geographical locations.  相似文献   

11.
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.  相似文献   

12.
Three pathogens, Riemerella anatipestifer, Escherichia coli, and Salmonella enterica, are leading causes of bacterial fibrinous pericarditis and perihepatitis in ducks in China and worldwide. It is difficult to differentiate these pathogens when obtaining a diagnosis on clinical signs and pathological changes. The aim of this research was to develop a multiplex polymerase chain reaction (m-PCR) that could discriminate R. anatipestifer, E. coli, and S. enterica rapidly in field isolates, or detect the three bacteria in clinical samples from diseased ducks. We selected the DnaB helicase (dnaB) gene of R. anatipestifer, alkaline phosphatase (phoA) gene of E. coli and invasion protein (invA) gene of S. enterica as target genes. In optimized conditions, the limitation of detection was approximately 103 colony forming units (CFU) of each of these three bacterial pathogens per PCR reaction tube. The m-PCR method showed specific amplification of respective genes from R. anatipestifer, E. coli, and S. enterica. Using the m-PCR system, bacterial strains isolated from diseased ducks in our laboratory were categorized successfully, and the pathogens could also be detected in clinical samples from diseased ducks. Therefore, the m-PCR system could distinguish the three pathogens simultaneously, for identification, routine molecular diagnosis and epidemiology, in a single reaction.  相似文献   

13.
O-Polysaccharides (O-antigens) were isolated from Escherichia coli O13, O129, and O135 and studied by chemical analyses along with 2D 1H and 13C NMR spectroscopy. They were found to possess a common →2)-l-Rha-(α1→2)-l-Rha-(α1→3)-l-Rha-(α1→3)-d-GlcNAc-(β1→ backbone, which is a characteristic structural motif of the O-polysaccharides of Shigella flexneri types 1-5. In both the bacterial species, the backbone is decorated with lateral glucose residues or/and O-acetyl groups. In E. coli O13, a new site of glycosylation on 3-substituted Rha was revealed and the following O-polysaccharide structure was established:The structure of the E. coli O129 antigen was found to be identical to the O-antigen structure of S. flexneri type 5a specified in this work and that of E. coli O135 to S. flexneri type 4b reported earlier.  相似文献   

14.
Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to ‘graze’ on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan “plaque” formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.  相似文献   

15.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

16.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

17.
We analyzed 100 Campylobacter spp. isolates (C. jejuni and C. coli) from Grenada, Puerto Rico and Alabama, which were collected from live broilers or retail broiler meat. We analyzed these isolates with four molecular typing methods: restriction fragment length polymorphism of the flaA gene (flaA-RFLP), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and automated repetitive extragenic palindromic polymerase chain reaction (REP-PCR) using the DiversiLab system. All methods performed similarly for the typing of C. jejuni and C. coli. The DNA extraction method appears to influence the results obtained with REP-PCR. This method was better for the typing of C. jejuni than C. coli, however both REP-PCR and flaA-RFLP generated types that were indistinguishable between C. jejuni and C. coli and appeared to be random, without any relationship to species, location, or source of isolates. PFGE and MLST generated typing results that had a better correlation with the geographic location of the isolates and showed higher concordance with the Wallace coefficient. The adjusted Rand coefficient did not show higher concordance among the methods, although the PFGE/MLST combination exhibited the highest concordance. PFGE and MLST revealed a better discriminatory power for C. coli isolates than REP-PCR or flaA-RFLP. The use of readily available online tools to calculate the confidence interval of the Simpson's index of diversity and the adjusted Rand and Wallace coefficients helped estimate the discriminatory power of typing methods. Further studies using different C. jejuni and C. coli strains may expand our understanding of the benefits and limitations of each of these typing methods for epidemiological studies of Campylobacter spp.  相似文献   

18.
Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain.  相似文献   

19.
Methylation at the 5-position of cytosine [m5C (5-methylcytidine)] occurs at three RNA nucleotides in Escherichia coli. All these modifications are at highly conserved nucleotides in the rRNAs, and each is catalyzed by its own m5C methyltransferase enzyme. Two of the enzymes, RsmB and RsmF, are already known and methylate 16S rRNA at nucleotides C967 and C1407, respectively. Here, we report the identity of the third E. coli m5C methyltransferase. Analysis of rRNAs by matrix-assisted laser desorption/ionization mass spectrometry showed that inactivation of the yccW gene leads to loss of m5C methylation at nucleotide 1962 in E. coli 23S rRNA. This methylation is restored by complementing the knockout strain with a plasmid-encoded copy of the yccW gene. Purified recombinant YccW protein retains its specificity for C1962 in vitro and methylates naked 23S rRNA isolated from the yccW knockout strain. However, YccW does not methylate assembled 50S subunits, and this is somewhat surprising as the published crystal structures show nucleotide C1962 to be fully accessible at the subunit interface. YccW-directed methylation at nucleotide C1962 is conserved in bacteria, and loss of this methylation in E. coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m5C methyltransferases RsmB and RsmF and is in fact more similar to known m5U (5-methyluridine) RNA methyltransferases. In keeping with the previously proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI.  相似文献   

20.
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号