首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Background Altered HLA class I cell surface expression is one of the major mechanisms by which tumor cells escape from T lymphocytes. Immunohistochemistry-defined phenotypes of lost HLA class I expression have been described in human solid tumors, nut less information is available on melanoma cell lines. Objectives To describe the frequency and distribution of different types of HLA class I antigen alterations in 91 melanoma cell lines from the European Searchable Tumour Cell and Databank (ESTDAB). Methods The HLA class I expression was assessed by flow cytometry and HLA genotyping. Results We found various types of HLA class I cell surface alterations in about 67% of the melanoma cell lines. These alterations range from total to selective HLA class I loss due to loss of heterozygosity (LOH), haplotype loss, β2-microglobulin gene mutation, and/or total or selective down-regulation of HLA class I molecules. The most frequently observed phenotype is down-regulation of HLA-B locus that was reversible after treatment with IFN -γ. Conclusions In general, HLA class I alterations in the majority of the cells analyzed were of regulatory nature and could be restored by IFN-γ. Analysis of the frequency of distinct HLA class I altered phenotypes in these melanoma cell lines revealed specific differences compared to other types of tumors. Rosa Méndez and Teresa Rodríguez have equally contributed to this work and both should be considered as first authors.  相似文献   

3.
Purpose: To characterize HLA class I antigen expression in non-small cell lung cancer (NSCLC) lesions, and to assess the clinical significance of these molecules’ downregulation. Methods: One hundred and ninety primary formalin fixed, paraffin embedded NSCLC lesions were stained with HLA class I heavy chain-specific mAb HC-10. Results were scored as percentage of stained tumor cells and categorized into three groups: 0–24% (negative), 25–75% (heterogeneous) and >75% (positive). HLA class I antigen expression was correlated with clinical and pathologic predictors of time to progression and survival and analyzed using the chi-square test. Association between HLA class I antigen expression and survival was assessed using Cox regression models, while controlling for confounders. Results: HLA class I antigen expression was negative, heterogeneous and positive in 153, 25 and 12 primary NSCLC lesions, respectively. Independent variables significantly associated with survival included tumor stage, PS and weight loss. The median survival times were 40.6, 44.0 and 17.9 months for patients with a HLA class I antigen expression scored as negative, heterogeneous and positive, respectively. Conclusion: HLA class I antigen defects were found with high frequency (93.6%) in NSCLC lesions. HLA class I antigen downregulation was associated with improved survival, although this association was not statistically significant. These results, which parallel similar findings in uveal melanoma and in breast carcinoma, raise the possibility that NK cells may play a role in the control of NSCLC tumors.N. Ramnath and D. Tan contributed equally to the paper  相似文献   

4.
Defects in human leukocyte antigen (HLA) class I expression may allow tumor cells to escape immune recognition. T cell infiltration is associated with a good prognosis in many cancers. However, the role of HLA class I expression and tumor-infiltrating lymphocytes (TILs) in malignant pleural mesothelioma (MPM) has not been fully analyzed. In the present study, we investigated the immune profiles and conducted outcome analyses of MPM patients. HLA class I expression and TILs (CD4+, CD8+, and NK cells) were detected by immunohistochemistry in a series of 44 MPM cases. To detect HLA class I expression, specimens were stained with the anti-pan HLA class I monoclonal antibody EMR8-5. The expression of HLA class I was positive in all patients. There was no case that showed negative HLA class I expression. The density of CD4+ and CD8+ TILs were strongly correlated (R = 0.76, p < 0.001). A high density of CD8+ TILs was a significantly better prognostic factor for the survival of patients with extrapleural pneumonectomy (p < 0.05). Multivariate analysis revealed that a high density of CD8+ TILs is an independent prognostic factor for patients who underwent extrapleural pneumonectomy. The presence of intratumoral CD8+ T cells was correlated with an improved clinical outcome, raising the possibility that CD8+ T cells might play a pivotal role in the antitumor immune response against MPMs. Thus, the stimulation of CD8+ lymphocytes might be an efficacious immunotherapy for MPM patients.  相似文献   

5.
Amyloid precursor-like protein 2 (APLP2) is a ubiquitously expressed protein. The previously demonstrated functions for APLP2 include binding to the mouse major histocompatibility complex (MHC) class I molecule H-2Kd and down regulating its cell surface expression. In this study, we have investigated the interaction of APLP2 with the human leukocyte antigen (HLA) class I molecule in human tumor cell lines. APLP2 was readily detected in pancreatic, breast, and prostate tumor lines, although it was found only in very low amounts in lymphoma cell lines. In a pancreatic tumor cell line, HLA class I was extensively co-localized with APLP2 in vesicular compartments following endocytosis of HLA class I molecules. In pancreatic, breast, and prostate tumor lines, APLP2 was bound to the HLA class I molecule. APLP2 was found to bind to HLA-A24, and more strongly to HLA-A2. Increased expression of APLP2 resulted in reduced surface expression of HLA-A2 and HLA-A24. Overall, these studies demonstrate that APLP2 binds to the HLA class I molecule, co-localizes with it in intracellular vesicles, and reduces the level of HLA class I molecule cell surface expression.  相似文献   

6.
Human leukocyte antigen (HLA) class I molecule downregulation occurs frequently in many cancers, and this abnormality might adversely affect the clinical course of cancer and the outcome of T-cell-based immunotherapy. Mutations in the HLA class I genes themselves, abnormalities in their regulation and/or defects in HLA class I-dependent antigen processing can underlie HLA class I downregulation. These mutations modulate the susceptibility of tumor cells to in vitro lysis by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Immune selection of CTL- and NK-cell-resistant tumor cells might explain the rapid progression and poor prognosis of cancers that exhibit HLA class I downregulation. These findings provide compelling evidence that HLA class I downregulation represents a significant challenge for the successful application of T-cell-based immunotherapy of cancer.  相似文献   

7.
Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids   总被引:50,自引:0,他引:50  
Regulation of HLA class I and class II antigen expression was studied in hybrids of human T and B lymphoblastoid cell lines (LCL). The T-LCL CEMR.3 expresses no HLA class II antigens. It expresses little total HLA class I antigen and no HLA-B antigens. The B-LCL 721.174 is a radiation-induced variant immunoselected for loss of class II antigen expression. In addition to showing a deletion of all HLA-DR and DQ structural genes, 721.174 expresses no HLA-B antigens and a decreased level of HLA-A antigen compared with the parental cell line. A hybrid of 721.174 and CEMR.3 expresses class II antigens encoded by CEMR.3. Increased expression of HLA class I antigens encoded by both 721.174 and CEMR.3 was also observed. Specifically, the previously undetectable HLA-B5 and HLA-Bw6 antigens encoded by 721.174 and CEMR.3, respectively, were present on the hybrid. Increased expression of the HLA-A2 antigen encoded by 721.174 was also observed. An immunoselected variant of the hybrid lacking both CEMR.3-derived copies of chromosome 6 lost expression of the HLA-B5 antigen encoded by 721.174 and expressed a decreased amount of HLA-A2. From these data, we infer that two complementary trans-acting factors mediate enhanced expression of HLA class I antigens in the hybrid. One of these factors is provided by a gene located on chromosome 6, derived from CEMR.3. The second factor, introduced by 721.174, is the gene previously postulated to induce expression of CEMR.3-encoded class I antigens in hybrids of CEMR.3 with B-LCL.  相似文献   

8.
Tumor cells of classical Hodgkin lymphoma (cHL) are characterized by a general loss of B cell phenotype, whereas antigen presenting properties are commonly retained. HLA class I is expressed in most EBV+ cHL cases, with an even enhanced expression in a proportion of the cases. Promyelocytic leukemia protein (PML) and special AT-rich region binding protein 1 (SATB1) are two global chromatin organizing proteins that have been shown to regulate HLA class I expression in Jurkat cells. We analyzed HLA class I, number of PML nuclear bodies (NBs) and SATB1 expression in tumor cells of 54 EBV+ cHL cases and used 27 EBV− cHL cases as controls. There was a significant difference in presence of HLA class I staining between EBV+ and EBV− cases (p<0.0001). We observed normal HLA class I expression in 35% of the EBV+ and in 19% of the EBV− cases. A stronger than normal HLA class I expression was observed in approximately 40% of EBV+ cHL and not in EBV− cHL cases. 36 EBV+ cHL cases contained less than 10 PML-NBs per tumor cell, whereas 16 cases contained more than 10 PML-NBs. The number of PML-NBs was positively correlated to the level of HLA class I expression (p<0.01). The percentage of SATB1 positive cells varied between 0% to 100% in tumor cells and was inversely correlated with the level of HLA class I expression, but only between normal and strong expression (p<0.05). Multivariable analysis indicated that the number of PML-NBs and the percentage of SATB1+ tumor cells are independent factors affecting HLA class I expression in EBV+ cHL. In conclusion, both PML and SATB1 are correlated to HLA class I expression levels in EBV+ cHL.  相似文献   

9.
Transplantation of acute myeloid leukemia (AML) patients with grafts from related haploidentical donors has been shown to result in a potent graft-versus-leukemia effect. This effect is mediated by NK cells because of the lack of activation of inhibitory killer cell immunoglobulin-like receptors (KIRs) which recognize HLA-Bw4 and HLA-C alleles. However, conflicting results have been reported about the impact of KIR ligand mismatching on the outcome of unrelated HLA-mismatched hematopoietic stem cells transplants (HSCT) to leukemic patients. The interpretation of these conflicting results is hampered by the scant information about the level of expression of HLA class I alleles on leukemic cells, although this variable may affect the activation of inhibitory KIRs. Therefore in the present study, utilizing a large panel of human monoclonal antibodies we have measured the level of expression of HLA-A, -B and -C alleles on 20 B-chronic lymphoid leukemic (B-CLL) cell preparations, on 16 B-acute lymphoid leukemic (B-ALL) cell preparations and on 19 AML cell preparations. Comparison of the level of HLA class I antigen expression on leukemic cells and autologous normal T cells identified selective downregulation of HLA-A and HLA-B alleles on 15 and 14 of the 20 B-CLL, on 2 and 5 of the 16 B-ALL and on 7 and 11 of the 19 AML patients tested, respectively. Most interestingly HLA-C alleles were markedly downregulated on all three types of leukemic cells; the downregulation was most pronounced on AML cells. The potential functional relevance of these abnormalities is suggested by the dose-dependent enhancement of NK cell activation caused by coating the HLA-HLA-Bw4 epitope with monoclonal antibodies on leukemic cells which express NK cell activating ligands. Our results suggest that besides the HLA and KIR genotype, expression levels of KIR ligands on leukemic cells should be included among the criteria used to select the donor-recipient combinations for HSCT.  相似文献   

10.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

11.
Three new kinds of recombinant DNA constructs were used to transfer cloned human class I HLA genes (A2 and B8) into unique HLA mutant lymphoblastoid cells: pHeBo(x): a class I gene, "x," in plasmid vector pHeBo, which contains a hygromycin resistance gene and Epstein-Barr virus oriP element that sustains extrachromosomal replication; pHPT(x): gene x in a vector with a hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene; pHPTe(x): gene x in a vector with the HPRT gene and oriP element. Cell surface class I antigen expression was strong in transferents made with class I-deficient lymphoblastoid cell line mutants .144 (A-null), .53 (B-null), and .184 (A-null, B-null). Transferents expressing HLA-A2 were recognized specifically by HLA-A2-specific cytotoxic T lymphocytes. When introduced on either of the vectors with the Epstein-Barr virus oriP element, the class I gene replicated extrachromosomally and was lost at rates of 0.2 to 0.3 per cell division. When introduced with vector pHPT (lacking Epstein-Barr virus oriP), the B8 gene was inserted at different chromosomal locations. Introduction of the HLA-B8 gene failed to restore antigen expression by HLA-B-null mutant .174, providing evidence that, unlike mutants exemplified by .53, .144, and .184, some HLA antigen loss mutants are deficient in a trans-acting function needed for class I antigen expression. Of more general interest, the results obtained with HLA class I genes in vectors that replicate extrachromosomally suggest ways of relating genic expression to chromatin structure and function and of attempting to clone functional human centromeres.  相似文献   

12.
Modulation of inhibitory and activating natural killer (NK) receptor ligands on tumor cells represents a promising therapeutic approach against cancer, including multiple myeloma (MM). Human leukocyte antigen (HLA) class I molecules, the NK cell inhibitory killer cell immunoglobulin-like receptor (KIR) ligands, are critical determinants of NK cell activity. Proteasome inhibitors have demonstrated significant anti-myeloma activity in MM patients. In this study, we evaluated the effect of proteasome inhibitors on the surface expression of class I in human MM cells. We found that proteasome inhibitors downregulated surface expression of class I in a dose- and time-dependent manner in MM cell line and patient MM cells. No significant changes in the expression of the MHC class I chain-related molecules (MIC) A/B and the UL16-binding proteins (ULBPs) 1–3 were observed. Downregulation of class I by lactacystin (LAC) significantly enhances NK cell-mediated lysis of MM. Furthermore, the downregulation degree of class I was associated with increased susceptibility of myeloma cells to NK cell killing. HLA blocking antibody produced results that were similar to the findings from proteasome inhibitor. Taken together, our data suggest that proteasome inhibitors, possible targeting inhibitory KIR ligand class I on tumor cells, may contribute to the activation of cytolytic effector NK cells in vitro, enhancing their anti-myeloma activity. Our findings provide a rationale for clinical evaluation of proteasome inhibitor, alone or in combination, as a novel approach to immunotherapy of MM.  相似文献   

13.
14.
c-myc down-regulates class I HLA expression in human melanomas   总被引:19,自引:4,他引:15       下载免费PDF全文
Expression of class I HLA antigen has been shown to be reduced in a number of human tumours. Here we show that in a panel of 11 melanoma cell lines with variable class I HLA expression an inverse correlation exists between the mRNA levels of c-myc and class I HLA. This suggests that high expression of the c-myc oncogene might inhibit the class I HLA expression. To test this hypothesis a melanoma cell line with a low c-myc and high class I HLA mRNA expression was transfected with a c-myc expression vector. All clones expressing the transfected c-myc gene show reduced class I HLA mRNA and beta 2-microglobulin mRNA expression. Reduced class I HLA mRNA levels result in a lowered class I protein expression on the cell surface. Treatment with gamma-interferon fully restores the class I HLA and beta 2-microglobulin expression in these cells. This effect is preceded by a transient decrease of the c-myc mRNA level. These results show that the class I HLA expression is modulated by the level of c-myc expression, thus opening up the possibility that high expression of this oncogene influences the interaction of melanoma cells with the immune system.  相似文献   

15.
Progress towards developing vaccines that can stimulate an immune response against growing tumours has involved the identification of the protein antigens associated with a given tumour type. Epitope mapping of tumour antigens for HLA class I- and class II-restricted binding motifs followed by immunization with these peptides has induced protective immunity in murine models against cancers expressing the antigen. MHC class I molecules presenting the appropriate peptides are necessary to provide the specific signals for recognition and killing by cytotoxic T cells (CTL). The principle mechanism of tumour escape is the loss, downregulation or alteration of HLA profiles that may render the target cell resistant to CTL lysis, even if the cell expresses the appropriate tumour antigen. In human tumours HLA loss may be as high as 50%, inferring that a reduction in protein levels might offer a survival advantage to the tumour cells. Alternatively, MHC loss may render tumour cells susceptible to natural killer cell-mediated lysis because they are known to act as ligands for killer inhibitory receptors (KIRs). We review the molecular features of MHC class I and class II antigens and discuss how surface MHC expression may be regulated upon cellular transformation. In addition, selective loss of MHC molecules may alter target tumour cell susceptibility to lymphocyte killing. The development of clinical immunotherapy will need to consider not only the expression of relevant CTL target MHC proteins, but also HLA inhibitory to NK and T cells. Received: 20 March 1999 / Accepted: 3 May 1999  相似文献   

16.
Major histocompatibility complex (MHC) class I loss or downregulation in cancer cells is a major immune escape route used by a large variety of human tumors to evade anti-tumor immune responses mediated by cytotoxic T lymphocytes. Multiple mechanisms are responsible for such HLA class I alterations. However, the precise frequency of these molecular defects has not been clearly determined in tumors derived from specific tissues. To analyze such defects we aim to define the major HLA class I-altered phenotypes in different tumor types. In this paper we report on HLA class I expression in 70 laryngeal carcinomas. We used immunohistological techniques with a highly selective panel of anti-HLA monoclonal antibodies (mAb), and polymerase chain reaction (PCR) microsatellite amplification of previously selected microsatellite markers (STR) located in chromosome 6 and 15. DNA was obtained from microdissected tumor tissues and surrounding stroma to define the loss of heterozygosity (LOH) associated with chromosome 6p21. Our results showed that LOH in chromosome 6 produced HLA haplotype loss (phenotype II) in 36% of the tumors. In addition, HLA class I total loss (phenotype I) was found in 11%; HLA A or B locus downregulation (phenotype III) was detected in 20%; and HLA class I allelic loss (phenotype IV) in 10% of all cases. We sometimes observed two or more associated mechanisms in the same HLA-altered phenotype, such as LOH and HLA total loss in phenotype I. In only 23% of tumors it was not possible to identify any HLA class I alteration. We conclude that the combination of immunohistological techniques and molecular analysis of tumor DNA obtained from microdissected tumor tissues provides a means for the first time of determining the actual frequency of the major HLA class I-altered phenotypes in laryngeal carcinomas.  相似文献   

17.
The class I molecules encoded by the major histocompatibility complex (MHC) present endogenously synthesized antigenic peptide fragments to cytotoxic T lymphocytes. We show here that these proteins are an essential component of the cell surface receptor for simian virus 40 (SV40). First, SV40 binding to cells can be blocked by two monoclonal antibodies against class I human lymphocyte antigen (HLA) proteins but not by monoclonal antibodies specific for other cell surface proteins. Second, SV40 does not bind to cells of two different human lymphoblastoid cell lines which do not express surface class I MHC proteins because of genetic defects in the beta 2-microglobulin gene in one line and in the HLA complex in the other. Transfection of these cell lines with cloned genes for beta 2-microglobulin and HLA-B8, respectively, restored expression of their surface class I MHC proteins and resulted in concomitant SV40 binding. Finally, SV40 binds to purified HLA proteins in vitro and selectively binds to class I MHC proteins in a cell surface extract.  相似文献   

18.
Recognition of antigen by cytotoxic T lymphocytes (CTL) is determined by interaction of both the T cell receptor and its CD8 coreceptor with peptide-major histocompatibility complex (pMHC) class I molecules. We examine the relative roles of these receptors in the activation of human CTL using mutations in MHC class I designed to diminish or abrogate the CD8/pMHC interaction. We use surface plasmon resonance to determine that point mutation of the alpha3 loop of HLA A2 abrogates the CD8/pMHC interaction without affecting the affinity of the T cell receptor/pMHC interaction. Antigen-presenting cells expressing HLA A2 which does not bind to CD8 fail to activate CTL at any peptide concentration. Comparison of CTL activation by targets expressing HLA A2 with normal, abrogated, or diminished CD8/pMHC interaction show that the CD8/pMHC interaction enhances sensitivity to antigen. We determine that the biochemical basis for coreceptor dependence is the activation of the 23-kDa phosphoform of the CD3zeta chain. In addition, we produce mutant MHC class I multimers that specifically stain but do not activate CTL. These reagents may prove useful in circumventing undesirable activation-related perturbation of intracellular processes when pMHC multimers are used to phenotype antigen-specific CD8+ lymphocytes.  相似文献   

19.
Invariant chain (Ii) binds to the human leukocyte antigen (HLA) class II molecule and assists it in the process of peptide acquisition. In addition, Ii binds to the HLA class I molecule, although there has been little study of its effects on the HLA class I molecule. In addition to its normal expression on antigen-presenting cells, Ii expression is up regulated in a variety of tumors. By flow cytometric analysis, we found that expression of Ii resulted in an increase in the number of cell surface HLA class I molecules and in the proportion of unstable HLA class I molecules at the surface of breast tumor cell lines. These data suggest that the expression of Ii by tumor cells may quantitatively and qualitatively alter the presentation of antigens on those cells.  相似文献   

20.
The transporter associated with antigen processing (TAP) translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA) class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P1 position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号