首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
程萱  翁土军  谭晓红  侯宁  王健  林福玉  黄培堂  杨晓 《遗传》2007,29(10):1237-1242
构建了含有骨钙素基因启动子、Cre重组酶基因和人生长激素基因polyA的转基因载体pOC-Cre, 以显微注射的方法将4.6 kb的转基因片段OC-Cre导入小鼠受精卵。16只子代小鼠中经PCR和Southern杂交鉴定, 有2只小鼠携带外源基因, 整合率为12.5%。为了检测OC-Cre在转基因小鼠中表达的组织特异性, 将转基因首建者小鼠与基因组上携带有LoxP位点的条件性Smad4基因敲除小鼠交配, PCR结果显示, 仅在子代纯合型小鼠骨组织基因组中扩增出了Cre介导重组后的片段。将OC-Cre转基因小鼠与ROSA26报告小鼠交配, 利用LacZ染色对双转基因阳性子代小鼠进行检测, 结果显示Cre重组酶在成骨细胞中特异性表达并介导ROSA基因座LoxP位点间的重组。所有这些结果说明:所建立的OC-Cre转基因小鼠在成骨细胞中特异性表达Cre重组酶, 并能在体内介导成骨细胞基因组上LoxP位点间的重组, 是一种理想的研制成骨细胞特异性基因敲除小鼠的工具小鼠。  相似文献   

2.
消化道细胞表达Cre重组酶转基因小鼠的功能鉴定   总被引:1,自引:0,他引:1  
目的:检测白蛋白启动子介导的Cre重组酶转基因小鼠Alb-Cre-2中Cre重组酶的组织分布及其在体内介导基因重组的作用。方法:将Alb-Cre小鼠与Smad4条件基因打靶小鼠交配,利用PCR对Cre重组酶介导重组的组织特异性进行检测;然后,将Alb-Cre-2转基因小鼠与ROSA26报告小鼠交配,利用LacZ染色对双转基因阳性子代小鼠进行检测。结果:PCR结果显示心、肺、胰、脑及消化道中Cre重组酶介导的Smad4基因发生重组;LacZ染色进一步表明Cre重组酶在肝细胞、胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞、大肠柱状细胞及空泡细胞中特异性表达,并介导ROSA位点LoxP序列间的重组。结论:Alb-Cre-2转基因小鼠在消化道中具有一定的组织特异性,只在胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞,大肠柱状细胞及空泡细胞等细胞类型中特异性表达,并能在体内成功地介导这些消化道上皮细胞基因组上LoxP位点间的重组,是一种研制在消化道特定细胞中特异性基因剔除小鼠的良好工具小鼠。  相似文献   

3.
EDAG是在胚胎发育阶段造血干细胞特异性表达的基因.为了在早期造血组织细胞中实现相关基因的条件敲除,构建了含有早期造血组织特异性表达的EDAG启动子和Cre重组酶基因的转基因EDAG-Cre表达载体质粒.通过显微注射的方法将线性化的5.6kb的EDAG-Cre转基因片段导入小鼠受精卵细胞核,获得的新生小鼠经过PCR鉴定,常规方法培育传代.结果发现,共获得了6只阳性转基因首建鼠,其中4只已经建系并稳定传代.RT-PCR分析表明Cre重组酶基因在阳性转基因小鼠的骨髓、脾脏、胸腺、外周血以及胎肝等组织中均有表达,重组酶活性也在脾和骨髓中获得确认.EDAG-Cre重组酶转基因小鼠的建立,为研究早期造血组织以及造血干细胞特异性基因条件敲除小鼠模型的建立奠定了基础.  相似文献   

4.
利用组织特异性分子标志物启动子调控Cre重组酶,研制了6种在不同组织中特异性表达Cre重组酶的转基因小鼠.这些转基因小鼠的基因型鉴定均使用设计在Cre基因编码区的通用引物.为了特异性检测胰腺组织表达Cre重组酶的转基因小鼠,在大鼠胰岛素RIP启动子上和Cre基因上设计1对引物进行PCR扩增,并通过凝胶电泳进行分析.PCR结果显示,设计在Cre基因上的通用引物可以从6种不同组织特异性Cre重组酶转基因小鼠基因组DNA中扩增获得480 bp产物;利用本研究设计的特异性引物可以从胰腺组织表达Cre重组酶转基因小鼠基因组DNA中扩增200 bp的目的条带.这一结果表明,利用特异性引物进行PCR反应,可有效地将胰腺组织表达Cre重组酶转基因小鼠与其他多种组织的Cm重组酶转基因小鼠鉴别开来.  相似文献   

5.
We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty- four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (beta-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses beta-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express beta-gal exclusively in the kidney. Histological analysis of the kidneys showed that beta-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined.  相似文献   

6.
角质细胞特异性表达Cre重组酶转基因小鼠的建立   总被引:9,自引:2,他引:9  
构建了含有角质细胞特异性角质素5启动子、Cre重组酶基因和人生长激素基因plyA的转基因载体pK5-Cre-hGH。以显微注射的方法将4.2kb的转基因片段K5-Cre-hGH引入小鼠基因组,共注射720枚受精卵,其中龄5枚移植至29只假孕母鼠的输卵管中发育,获得子代小鼠48只,经基因型鉴定有12只小鼠在其基因组上整合有Cre基因,整合率为25%。将带有cre重组酶基因的小鼠与基因组上携带loxP位点的smad4条件基因打靶小鼠杂交以检测Cre重组酶组织特异性表达情况以及介导重组的功能。结果表明,K5-Cre转基因小鼠只在皮肤组织中表达Cre重组酶并能在体内成功地介导loxP位点的重组。  相似文献   

7.
侯宁  杨冠  范雄伟  吴秀山  杨晓 《遗传》2009,31(1):69-74
肥大软骨细胞是软骨细胞的终末分化形式,在软骨内成骨过程中发挥十分关键的作用。为了研究肥大软骨细胞在骨骼发育过程中的功能,我们构建了在8.2 kb小鼠X型胶原基因(Col10a1)启动子控制下表达Cre重组酶的转基因小鼠品系(Col10a1-8.2-Cre)。采用显微注射法将11.5 kb的转基因片段引入小鼠基因组,共注射受精卵328枚,获得子代鼠51只,经PCR基因型鉴定有3只在基因组上整合有Cre重组酶基因。PCR检测发现Col10a1-8.2-Cre转基因在含有肥大软骨细胞的组织中表达。为了检测Cre重组酶表达的强度和组织特异性,转基因小鼠与ROSA26报告小鼠交配。子代ROSA26;Col10a1-8.2-Cre双转基因小鼠LacZ染色检测的结果显示,Cre重组酶在所有的肥大软骨细胞中表达。原位杂交的结果验证Col10a1-8.2-Cre转基因表达在肥大区的上端。以上结果表明,我们建立的肥大软骨细胞特异性表达Cre重组酶的转基因小鼠品系可以作为一种遗传学工具,介导目的基因在肥大软骨细胞中的敲除。  相似文献   

8.
alpha-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse alpha-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse alpha-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro, and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of EGFP with 1.3 kb mouse alpha-internexin promoter was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb alpha-Internexin promoter. The activity of the Cre recombinase at postnatal day 1 was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that beta-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for alpha-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any beta-galactosidase activity. Therefore, the cre transgene driven by mouse alpha-internexin promoter, described here, provides a useful animal model to specifically manipulate genes in the developing nervous system.  相似文献   

9.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

10.
Zhao Z  Hou N  Sun Y  Teng Y  Yang X 《遗传学报》2010,37(9):647-652
Parietal cells are one of the largest epithelium cells of the mucous membrane of the stomach that secrete hydrochloric acid.To study the function of gastric parietal cells during gastric epithelium homeostasis,we generated a transgenie mouse line,namely,Atp4b-Cre,in which the expression of Cre recombinase was controlled by a 1.0 kb promoter of mouse β-subunit of H+-,K+-ATPase gene(Atp4b).In order to test the tissue distribution and excision activity of Cre recombinase in vivo,the Atp4b-Cre transgenic mice were bred with the reporter strain ROSA26 and a mouse strain that carries Smad4 conditional alleles(Smad4Co/Co).Multiple-tissue PCR of Atp4b-Cre;Smad4Co/+mice revealed that the recombination only happened in the stomach.As indicated by LacZ staining,ROSA26;Atp4b-Cre double transgenic mice showed efficient expression of Cre recombinase within the gastric parietal cells.These results showed that this Atp4b-Cre mouse line could be used as a powerful tool to achieve conditional gene knockout in gastric parietal cells.  相似文献   

11.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Summary: The neuron‐specific rat enolase (NSE) promoter was employed to establish transgenic mice expressing Cre recombinase in the central nervous system. Founders were crossed with dormant lacZ indicator mice and specificity as well as efficiency of Cre‐mediated transgene activation was determined by PCR and/or X‐gal staining. Whereas most transgenic lines exhibited Cre activity in early development resulting in widespread Cre activity, one line (NSE‐Cre26) expressed high levels of Cre in the developing and adult brain. With the exception of kidney, which showed occasionally low level of Cre activity, Cre recombination in double transgenics was restricted to the nervous system. Whole‐mount X‐gal staining of 9.5 dpc embryos indicated Cre‐mediated lacZ expression in forebrain, hindbrain, and along the midbrain flexure. A similar expression pattern was observed during later stages of embryogenesis (11.5–13.5 dpc). In adult mice, Cre recombinase was expressed in cerebral cortex and cerebellum and high levels of Cre‐mediated lacZ expression were observed in hippocampus, cortex, and septum. The NSE‐Cre26 transgenic mouse line thus provides a useful tool to specifically overexpress and/or inactivate genes in the developing and adult brain. genesis 31:118–125, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

14.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

15.
Transgenic mice carrying the coding sequence of the Cre recombinase, whose expression was driven by the spermatocyte-specific Pgk-2 promoter, were generated. These mice were crossed with a reporter transgenic line, which produces beta-galactosidase depending on the occurrence of loxP-mediated DNA recombination. When DNA of the offspring was analyzed by PCR and Southern blotting, signals that appear after the recombination were detectable only in the testis. Histochemical analyses revealed that beta-galactosidase was present in spermatocytes and spermatogenic cells at later differentiation stages. However, the distribution of the protein was not uniform in all spermatocytes. Analyses of genomic DNA of the next generation indicated that recombination took place in about 70% of spermatogenic cells. From these results, we concluded that this transgenic line possessing Pgk-2-driven expression of the Cre recombinase should be useful for identifying spermatogenic genes that function at or after the spermatocyte stage.  相似文献   

16.
To introduce restricted DNA recombination events into catecholaminergic neurons using the Cre/loxP technology, we generated transgenic mice carrying the Cre recombinase gene driven by a 9 kb rat tyrosine hydroxylase (TH) promoter. Immunohistochemistry performed on transgenic mouse brain sections revealed a high number of cells expressing Cre in areas where TH is normally expressed, including the olfactory bulb, hypothalamic and midbrain dopaminergic neurons, and the locus coeruleus. Double immunohistochemistry and immunofluorescence indicated that colocalization of TH and Cre is greater than 80%. Cre expression was also found in TH-positive amacrine neurons of the retina, chromaffin cells of the adrenal medulla, and sympathetic ganglia. We crossbred TH-Cre mice with the floxed reporter strain Z/AP and observed efficient Cre-mediated recombination in all areas expressing TH, indicating that transgenic Cre is functional. Therefore, we have generated a valuable transgenic mouse strain to induce specific mutations of "floxed" genes in catecholaminergic neurons.  相似文献   

17.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

18.
目的:探索将增强子应用于构建Cre转基因小鼠品系,为以条件基因敲除为基础的基因功能研究提供更多的工具。方法:通过PCR方法从小鼠的细菌人工染色体扩增UH增强子片段,构建含有Hsp68基础启动子、增强子UH、Cre重组酶基因和SV40 polyA的转基因载体pLW400,将3.3 kb的转基因片段通过显微注射导入小鼠受精卵;为了检测Cre在转基因小鼠中的表达,将转基因一代小鼠与纯合子ROSA26报告小鼠(R/R)交配,收集第14 d胚胎期(E14)的舌组织进行LacZ染色检测鉴定。结果:经鉴定,31只子代小鼠中有6只携带外源基因,整合率为19.4%;与R/+对照相比,E14期的双基因型Cre,R/+舌组织为阳性结果(蓝色)。这表明Cre基因在转基因小鼠舌组织内得到表达,并在体内介导ROSA26基因座loxP位点间的重组,且有效删除了2个loxP之间的片段,从而启动了LacZ基因的表达。结论:构建了UH增强子-Hsp68Cre的转基因小鼠,在舌肌中特异表达Cre基因,提示增强子可以被选择应用于Cre转基因小鼠的构建;为舌肌的发育和再生研究奠定了基础。  相似文献   

19.
Dendritic cells (DCs) are involved in T cell activation via their uptake and presentation of antigens. In vivo function of DCs was analyzed using transgenic mouse models that express diphtheria toxin receptor (DTR) or the diphtheria toxin-A subunit (DTA) under the control of the CD11c/Itgax promoter. However, CD11c+ cells are heterogeneous populations that contain several DC subsets. Thus, the in vivo function of each subset of DCs remains to be elucidated. Here, we describe a new inducible DC ablation model, in which DTR expression is induced under the CD11c/Itgax promoter after Cre-mediated excision of a stop cassette (CD11c-iDTR). Crossing of CD11c-iDTR mice with CAG-Cre transgenic mice, expressing Cre recombinase under control of the cytomegalovirus immediate early enhancer-chicken beta-actin hybrid promoter, led to the generation of mice, in which DTR was selectively expressed in CD11c+ cells (iDTRΔ mice). We successfully deleted CD11c+ cells in bone marrow-derived DCs in vitro and splenic CD11c+ cells in vivo after DT treatment in iDTRΔ mice. This mouse strain will be a useful tool for generating mice lacking a specific subset of DCs using a transgenic mouse strain, in which the Cre gene is expressed by a DC subset-specific promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号