首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticoids (GC) act as potent anti-inflammatory and immunosuppressive agents on a variety of immune cells. However, the exact mechanisms of their action are still unknown. Recently, we demonstrated that GC induce apoptosis in human peripheral blood monocytes. In the present study, we examined the signaling pathway in GC-induced apoptosis. Monocyte apoptosis was demonstrated by annexin V staining, DNA laddering, and electron microscopy. Apoptosis required the activation of caspases, as different caspase inhibitors prevented GC-induced cell death. In addition, the proteolytic activation of caspase-8 and caspase-3 was observed. In additional experiments, we determined the role of the death receptor CD95 in GC-induced apoptosis. CD95 and CD95 ligand (CD95L) were up-regulated in a dose- and time-dependent manner on the cell membrane and also released after treatment with GC. Costimulation with the GC receptor antagonist mifepristone diminished monocyte apoptosis as well as CD95/CD95L expression and subsequent caspase-8 and caspase-3 activation. In contrast, the caspase inhibitor N:-acetyl-Asp-Glu-Val-Asp-aldehyde suppressed caspase-3 activation and apoptosis, but did not down-regulate caspase-8 activation and expression of CD95 and CD95L. Importantly, GC-induced monocyte apoptosis was strongly abolished by a neutralizing CD95L mAb. Therefore, our data suggest that GC-induced monocyte apoptosis is at least partially mediated by an autocrine or paracrine pathway involving the CD95/CD95L system.  相似文献   

2.
Hypoxia enhances immortality and metastatic properties of solid tumors. Deregulation of histone acetylation has been associated with several metastatic cancers but its effect on hypoxic responses of cancer cells is not known. This study aimed at understanding the effectiveness of the hydrazinocurcumin, CTK7A, an inhibitor of p300 lysine/histone acetyltransferase (KAT/HAT) activity, in inducing apoptosis of gastric cancer cells (GCCs) exposed to cobalt chloride (CoCl2), a hypoxia-mimetic chemical, or 1% O2. Here, we show that CTK7A-induced hydrogen peroxide (H2O2) generation in CoCl2-exposed and invasive gastric cancer cells (GCCs) leads to p38 MAPK-mediated Noxa expression and thereafter, mitochondrial apoptotic events. Noxa induction in normal immortalized gastric epithelial cells after CTK7A and hypoxia-exposure is remarkably less in comparison to similarly-treated GCCs. Moreover, hypoxia-exposed GCCs, which have acquired invasive properties, become apoptotic after CTK7A treatment to a significantly higher extent than normoxic cells. Thus, we show the potential of CTK7A in sensitizing hypoxic and metastatic GCCs to apoptosis induction.  相似文献   

3.
So far, the understanding of germ cell cancer (GCC) pathogenesis is based on a model, where seminomas and non‐seminomas represent distinct entities although originating from a common precursor termed germ cell neoplasia in situ (GCNIS). Embryonal carcinomas (ECs), the stem cell population of the non‐seminomas, is pluri‐ to totipotent and able to differentiate into cells of all three germ layers, giving rise to teratomas or tumours mimicking extraembryonic tissues (yolk sac tumours, choriocarcinomas). With regard to gene expression, (epi)genetics and histology, seminomas are highly similar to GCNIS and primordial germ cells, but limited in development. It remains elusive, whether this block in differentiation is controlled by cell intrinsic mechanisms or by signals from the surrounding microenvironment. Here, we reviewed the recent literature emphasizing the plasticity of GCCs, especially of seminomas. We propose that this plasticity is controlled by the microenvironment, allowing seminomas to transit into an EC or mixed non‐seminoma and vice versa. We discuss several mechanisms and routes of reprogramming that might be responsible for this change in the cell fate. We finally integrate this plasticity into a new model of GCC pathogenesis, allowing for an alternative view on the dynamics of GCC development and progression.  相似文献   

4.
Chemically synthesized sugar-cholestanols with mono-, di-, and tri-saccharides attached to cholestanol showed strong inhibiting activity against the proliferation of colorectal and gastric cancer cells. In contrast, cholestanol without sugar moieties was totally ineffective. Furthermore, when cancer cells were exposed to GlcNAcRbetacholestanol (R=(-) or beta1-3Gal), the compound was rapidly taken up via the lipid rafts/microdomains on the cell surface. The uptake of sugar-cholestanol in mitochondria increased gradually and was followed by the release of cytochrome c from mitochondria and the activation of apoptotic signals through the mitochondrial pathway and the caspase cascade, leading to apoptotic cell death, characterized by DNA ladder formation and nuclear fragmentation. Additionally, the examination of GlcNAcRbetacholestanol in a mouse model of peritoneal dissemination showed a dramatic reduction of tumor growth (P < 0.003) and prolonged mouse survival time (P<0.0001). Based on these observations, we believe that the sugar-cholestanols described here have clinical potential as novel anticancer agents.  相似文献   

5.
6.
Severe hypoxic microenvironment endangers cell survival of anterior cruciate ligament (ACL) fibroblasts and is harmful to ACL repair and regeneration. In the current study, we explored the effects of mechanogrowth factor (MGF) E peptide on the hypoxia-induced apoptosis of ACL fibroblasts and relevant mechanisms. It demonstrated that severe hypoxia promoted hypoxia-inducible factor-1α (HIF-1α) expression and caused cell apoptosis of ACL fibroblasts through increasing caspase 3/7/9 messenger RNA (mRNA), cleaved caspase 3 and proapoptotic proteins expression levels but decreasing antiapoptotic proteins expression levels. Fortunately, MGF E peptide effectively protected ACL fibroblasts against hypoxia-induced apoptosis through regulating caspase 3/7/9 mRNA, cleaved caspase 3 and apoptosis-relevant proteins expression levels. Simultaneously, mitochondrial, @@@MEK-ERK1/2 (extracellular-signal-regulated kinase 1/2), and phosphoinositide-3-kinase-protein kinase B (PI3K-Akt) pathways were involved in MGF E peptide regulating hypoxia-induced apoptosis of ACL fibroblasts. In rabbit ACL rupture model, MGF E peptide also decreased HIF-1α expression levels, cell apoptosis, and facilitated cell proliferation. In addition, MGF could accelerate angiogenesis after ACL injury probably owing to its recruitment of proangiogenesis cells by stromal cell-derived factor 1α/CXCR4 axis and stimulation of vascular endothelial growth factor α expression level. In conclusion, our findings suggested that MGF E peptide could be utilized for ACL repair and regeneration and supplied experimental support for its application in clinical ACL treatment as a potential strategy.  相似文献   

7.
8.
Inactivation of tumour suppressor genes by promoter methylation plays an important role in the initiation and progression of gastric cancer (GC). Transmembrane 106A gene (TMEM106A) encodes a novel protein of previously unknown function. This study analysed the biological functions, epigenetic changes and the clinical significance of TMEM106A in GC. Data from experiments indicate that TMEM106A is a type II membrane protein, which is localized to mitochondria and the plasma membrane. TMEM106A was down‐regulated or silenced by promoter region hypermethylation in GC cell lines, but expressed in normal gastric tissues. Overexpression of TMEM106A suppressed cell growth and induced apoptosis in GC cell lines, and retarded the growth of xenografts in nude mice. These effects were associated with the activation of caspase‐2, caspase‐9, and caspase‐3, cleavage of BID and inactivation of poly (ADP‐ribose) polymerase (PARP). In primary GC samples, loss or reduction of TMEM106A expression was associated with promoter region hypermethylation. TMEM106A was methylated in 88.6% (93/105) of primary GC and 18.1% (2/11) in cancer adjacent normal tissue samples. Further analysis suggested that TMEM106A methylation in primary GCs was significantly correlated with smoking and tumour metastasis. In conclusion, TMEM106A is frequently methylated in human GC. The expression of TMEM106A is regulated by promoter hypermethylation. TMEM106A is a novel functional tumour suppressor in gastric carcinogenesis.  相似文献   

9.
10.
The peritoneum, especially the omentum, is a common site for gastric cancer (GC) metastasis. Our aim was to expound the role and mechanisms of Piezo1 on GC omentum metastasis. A series of functional assays were performed to examine cell proliferation, clone formation, apoptosis, Ca2+ influx, mitochondrial membrane potential (MMP) and migration after overexpression or knockdown of Piezo1. A GC peritoneal implantation and metastasis model was conducted. After infection by si-Piezo1, the number and growth of tumours were observed in abdominal cavity. Fibre and angiogenesis were tested in metastatic tumour tissues. Piezo1 had higher expression in GC tissues with omentum metastasis and metastatic lymph node tissues than in GC tissues among 110 patients. High Piezo1 expression was associated with lymph metastasis, TNM and distant metastasis. Overexpressed Piezo1 facilitated cell proliferation and suppressed cell apoptosis in GC cells. Moreover, Ca2+ influx was elevated after up-regulation of Piezo1. Piezo1 promoted cell migration and Calpain1/2 expression via up-regulation of HIF-1α in GC cells. In vivo, Piezo1 knockdown significantly inhibited peritoneal metastasis of GC cells and blocked EMT process and angiogenesis. Our findings suggested that Piezo1 is a key component during GC omentum metastasis, which could be related to up-regulation of HIF-1α.  相似文献   

11.
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca‐F and Hca‐P cells. A CLIC4‐target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca‐F and Hca‐P cells. Quantitative real‐time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide‐induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca‐F and Hca‐P cells transfected by pSilencer‐CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca‐F and Hca‐P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer‐CLIC4 siRNA‐2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca‐F and Hca‐P cells. The results demonstrated that siRNA‐induced down‐regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca‐F and Hca‐P cells. J. Cell. Biochem. 119: 659–668, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
Gastric cancer peritoneal metastases (GCPM) is a leading cause of GC-related death. Early detection of GCPM is critical for improving the prognosis of advanced GC. Differentially expressed genes (DEGs) were identified in the GSE62254 database to distinguish between GCPM and non-GCPM. The gastric cancer peritoneal metastases signature (GCPMs) was developed using DEGs. We analysed the effectiveness of GCPMs as indicators for prognosis, chemotherapy, and immune therapy response in GC patients. Subsequently, we analysed the correlation between GCPMs and immune microenvironment as well as immune escape in GC patients. Random forest model and immunohistochemistry was utilized to identify the crucial genes that can aid in the diagnosis of GCPM. We identified five DEGs and utilized their expression to construct GCPMs. Patients with high GCPMs had a higher likelihood of a poor prognosis, while those with low GCPMs appeared to potentially benefit more from chemotherapy. GCPMs were a dependable marker for predicting the response to immunotherapy. Additionally, GCPMs was found to be significantly linked to stromal score and cancer-associated fibroblasts. SYNPO2 has been identified as the gene with the highest significance in the diagnosis of GCPM. Immunohistochemistry suggests that SYNPO2-positive expression in tumour cells, fibroblasts, inflammatory cell may be associated with promoting peritoneal metastasis in GC. GCPMs have shown to be a promising biomarker for predicting the prognosis and response of GC patients to chemotherapy and immunotherapy. The use of GCPMs for individual tumour evaluation may pave the way for personalized treatment for GC patients in the future.  相似文献   

13.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

14.
CD44 promotes resistance to apoptosis in murine colonic epithelium   总被引:3,自引:0,他引:3  
Dysregulated expression of CD44 isoforms occurs consistently in colon carcinogenesis, and this change occurs also in most other types of cancer. One of the basic features of malignant transformation is the acquisition of resistance to apoptosis. We previously found that the colonic epithelium of mice, deficient in CD44 is predisposed to apoptosis. In this study, we asked whether the expression of CD44 alters the response of the colon to an apoptotic stimulus, and what are the mechanisms involved. For this, we assessed the susceptibility of the murine colon to apoptosis by total body irradiation to induce apoptosis. Apoptotic and concomitant changes relevant to the mechanisms of apoptosis were monitored by molecular markers of apoptosis. We found enhanced susceptibility to apoptosis in CD44 deficient colonic epithelium based on an increase in the number of apoptotic bodies, and activation of caspase 3. This was not associated with alterations in proliferations as shown by comparable Ki-67 expression and BrdU labeling. Furthermore, upregulated active caspase 3 in CD44 deficient colon was accompanied by concomitant molecular alterations in caspase 9 and not caspase 8, and this indicated the involvement of the mitochondrial pathway in apoptosis execution. Overall, this is the first report demonstrating CD44 mediated resistance to apoptosis in the colonic epithelium in vivo. This implicates CD44 in promoting cell transformation into a malignant phenotype, in conjunction with other anti-apoptotic factors.  相似文献   

15.
Autophagy is associated with luteal cells death during regression of the corpus luteum (CL) in some species. However, the involvement of autophagy or the association between autophagy and apoptosis in CL regression are largely unknown. Therefore, we investigated the role of autophagy in CL regression and its association with apoptosis. Ovaries were obtained from pseudopregnant rats at Days 2 (early), 7 (mid-), and 14 and 20 (late-luteal stage) of the pseudopregnancy; autophagy-associated protein (microtuble-associated protein light chain 3 [LC3]) was immunolocalized and its expression level was measured. Luteal cell apoptosis was evaluated by measuring cleaved caspase 3 expression. LC3 expression increased slightly from early to mid-luteal stage, with maximal levels detected at the late-luteal stage in steroidogenic luteal cells. The expression level of the membrane form of LC3 (LC3-II) also increased during luteal stage progression, and reached a maximum at the end point of late-luteal stage (Day 20). This pattern coincided with cleaved caspase 3 expression. Furthermore, LC3-II expression increased, as did levels of cleaved caspase 3 in luteal cells cultured with prostaglandin F(2alpha) known to induce CL regression. These findings suggest that luteal cell autophagy is directly involved in CL regression, and is correlated with increased apoptosis. In addition, autophagic processes were inhibited using 3-methyladenine or bafilomycin A1 to evaluate the role of autophagy in apoptosis induction. Inhibition of autophagosome degradation by fusion with lysosomes (bafilomycin A1) increased apoptosis and cell death. Furthermore, inhibition of autophagosome formation (3-methyladenine) decreased apoptosis and cell death, suggesting that the accumulation of autophagosomes induces luteal cell apoptosis. In conclusion, these results indicate that autophagy is involved in rat luteal cell death through apoptosis, and is most prominent during CL regression.  相似文献   

16.
A gastric cancer (GC) cell line, AGS, has high-level expression of CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is present on the surfaces of a large variety of cells, including B cells, endothelial cells, dendritic cells and some carcinoma cells, and delivers signals regulating diverse cellular responses, such as proliferation, differentiation, growth suppression, and cell death. In this research, we studied the effects of different forms of CD40 stimulation on AGS cells by flow cytometry, Western blotting and siRNA transfection. We found that different forms of CD40 stimulation, either recombinant soluble CD40L (sCD40L, ligation) or agonist anti-CD40 antibody (cross-linking), induced different effects in AGS gastric cancer cells, proliferation or apoptosis. We also showed that VEGF provided a significant contribution to sCD40L-induced proliferation, while agonist anti-CD40 antibody induced GADD45 upregulation and promoted apoptosis.  相似文献   

17.
Peritoneal metastases are one reason for the poor prognosis of scirrhous gastric cancer (SGC), and myofibroblast provides a favorable environment for the peritoneal dissemination of gastric cancer. The aim of this study was to determine whether myofibroblast originates from peritoneal mesothelial cells under the influence of the tumor microenvironment. Immunohistochemical studies of peritoneal biopsy specimens from patients with peritoneal lavage cytological (+) status demonstrate the expression of the epithelial markers cytokeratin in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. To confirm this hypothesis in vitro, we co-incubated mesothelial cells with SGC or non-SGC to investigate morphology and function changes. As we expected, mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with loss of epithelial morphology and decrease in the expression of cytokeratin and E-cadherin when exposed to conditioned medium from HSC-39, and the induction of mesothelial cells can be abolished using a neutralizing antibody to transforming growth factor-beta1 (TGF-β1) as well as by pre-treatment with SB431542. Moreover, we found that these mesothelial cells-derived cells exhibit functional properties of myofibroblasts, including the ability to increase adhesion and invasion of SGC. In summary, our current data demonstrated that mesothelial cells are a source of myofibroblasts under the SGC microenvironment which provide a favorable environment for the dissemination of gastric cancer; TGF-β1 produced by autocrine/paracrine in peritoneal cavity may play a central role in this pathogenesis.  相似文献   

18.
Mini‐chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up‐regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression‐free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase‐3 were increased, whereas Bcl‐2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.  相似文献   

19.
Osteosarcoma is the most common primary bone cancer that affects adolescents with early metastatic potential and drastically reduces their long-term survival rate if pulmonary metastases are detected at diagnosis. The natural naphthoquinol compound deoxyshikonin exhibits anticancer properties, so we hypothesized that it has an apoptotic effect on osteosarcoma U2OS and HOS cells and studied its mechanisms. After deoxyshikonin treatment, dose-dependent decreases in cell viability, induction of cell apoptosis and arrest in the sub-G1 phase of U2OS and HOS cells were observed. The increases in cleaved caspase 3 expression and the decreases in X-chromosome-linked IAP (XIAP) and cellular inhibitors of apoptosis 1 (cIAP-1) expressions after deoxyshikonin treatment in the human apoptosis array were identified in HOS cells, and dose-dependent expression changes of IAPs and cleaved caspase 3, 8 and 9 were verified by Western blotting in U2OS and HOS cells. Phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38 expressions in U2OS and HOS cells was also increased by deoxyshikonin in a dose-dependent manner. Subsequently, cotreatment with inhibitors of ERK (U0126), JNK (JNK-IN-8) and p38 (SB203580) was performed to show that p38 signalling is responsible for deoxyshikonin-induced apoptosis in U2OS and HOS cells, but not via the ERK and JNK pathways. These discoveries demonstrate that deoxyshikonin may be a possible chemotherapeutic candidate to induce cell arrest and apoptosis by activating extrinsic and intrinsic pathways through p38 for human osteosarcoma.  相似文献   

20.
Diosgenin is a plant steroid which is able to induce megakaryocytic differentiation of human erythroleukemia (HEL) cells followed by apoptosis at a later stage. Apoptosis markers and phospho‐kinases involved during the subsequent apoptosis of megakaryocytes after diosgenin‐induced differentiation in these cells were detected using a proteomic approach. In mature megakaryocytes undergoing apoptosis, we observed increased expression of intrinsic apoptosis markers such as Bax/Bcl‐2 ratio and cleaved caspase‐9 as well as extrinsic apoptosis markers including cell death receptors and cleaved caspase‐8. Furthermore, we demonstrated the link between both apoptotic pathways by Bid cleavage and confirmed the executive phase of apoptosis by caspase‐3 cleavage. For the first time, we examined kinase activation and showed that kinases including Src, Tor, Akt, CREB, RSK and Chk2 may be implicated in signalling of subsequent apoptosis of mature megakaryocytes after diosgenin‐induced differentiation of HEL cells. J. Cell. Biochem. 107: 785–796, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号