首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A-type lamins gene (LMNA) mutations cause an autosomal dominant inherited form of Emery-Dreifuss muscular dystrophy (EDMD). EDMD is characterized by slowly progressive muscle weakness and wasting and dilated cardiomyopathy, often leading to heart failure-related disability. EDMD is highly penetrant with poor prognosis and there is currently no specific therapy available. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. Genetic background is a well-known factor that significantly affects phenotype in several mouse models of human diseases. This phenotypic variability is attributed, at least in part, to genetic modifiers that regulate the disease process. To characterize the phenotype of A-type lamins mutation on different genetic background, we created and phenotyped C57BL/6JRj-LmnaH222P/H222P mice (C57Lmna p.H222P) and compared them with the 129S2/SvPasCrl-LmnaH222P/H222P mice (129Lmna p.H222P). These mouse strains were compared with their respective control strains at multiple time points between 3 and 10 months of age. Both contractile and electrical cardiac muscle functions, as well as survival were characterized. We found that 129Lmna p.H222P mice showed significantly reduced body weight and reduced cardiac function earlier than in the C57Lmna p.H222P mice. We also revealed that only 129Lmna p.H222P mice developed heart arrhythmias. The 129Lmna p.H222P model with an earlier onset and more pronounced cardiac phenotype may be more useful for evaluating therapies that target cardiac muscle function, and heart arrhythmias.  相似文献   

2.

Background

Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.

Principal Findings

Lmna-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4+ and CD8+ T cells. Transplantation of Lmna-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.

Conclusions

Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna -/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.  相似文献   

3.
A-type lamins A and C are nuclear intermediate filament proteins in which mutations have been implicated in multiple disease phenotypes commonly known as laminopathies. A few studies have implicated sumoylation in the regulation of A-type lamins. Sumoylation is a post-translational protein modification that regulates a wide range of cellular processes through the attachment of small ubiquitin-related modifier (sumo) to various substrates. Here we showed that laminopathy mutants result in the mislocalization of sumo1 both in vitro (C2C12 cells overexpressing mutant lamins A and C) and in vivo (primary myoblasts and myopathic muscle tissue from the LmnaH222P /H222P mouse model). In C2C12 cells, we showed that the trapping of sumo1 in p.Asp192Gly, p.Gln353Lys, and p.Arg386Lys aggregates of lamin A/C correlated with an increased steady-state level of sumoylation. However, lamin A and C did not appear to be modified by sumo1. Our results suggest that mutant lamin A/C alters the dynamics of sumo1 and thus misregulation of sumoylation may be contributing to disease progression in laminopathies.  相似文献   

4.

Background

Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of LmnaH222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in LmnaH222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit.

Methods

Male LmnaH222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated.

Results

Treatment of LmnaH222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional shortening at 20 weeks of age.

Conclusions

Both ACE inhibition and MEK1/2 inhibition have beneficial effects on left ventricular function in LmnaH222P/H222P mice and both drugs together have a synergistic benefit when initiated after the onset of left ventricular dysfunction. These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor in addition to standard of care in patients with dilated cardiomyopathy caused by LMNA mutations.  相似文献   

5.
Mutations in LMNA, which encodes A-type nuclear lamins, cause disorders of striated muscle that have as a common feature dilated cardiomyopathy. We have demonstrated an abnormal activation of both the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) branches of the mitogen-activated protein kinase signaling cascade in hearts from LmnaH222P/H222P mice that develop dilated cardiomyopathy. We previously showed that pharmacological inhibition of cardiac ERK signaling in these mice delayed the development of left ventricle dilatation and deterioration in ejection fraction. In the present study, we treated LmnaH222P/H222P mice with SP600125, an inhibitor of JNK signalling. Systemic treatment with SP600125 inhibited JNK phosphorylation, with no detectable effect on ERK. It also blocked increased expression of RNAs encoding natriuretic peptide precursors and proteins involved in the architecture of the sarcomere that occurred in placebo-treated mice. Furthermore, treatment with SP600125 significantly delayed the development of left ventricular dilatation and prevented decreases in cardiac ejection fraction and fibrosis. These results demonstrate a role for JNK activation in the development of cardiomyopathy caused by LMNA mutations. They further provide proof-of-principle for JNK inhibition as a novel therapeutic option to prevent or delay the cardiomyopathy in humans with mutations in LMNA.  相似文献   

6.
Laminopathies encompass a wide array of human diseases associated to scattered mutations along LMNA, a single gene encoding A-type lamins. How such genetic alterations translate to cellular defects and generate such diverse disease phenotypes remains enigmatic. Recent work has identified nuclear envelope proteins—emerin and the linker of the nucleoskeleton and cytoskeleton (LINC) complex—which connect the nuclear lamina to the cytoskeleton. Here we quantitatively examine the composition of the nuclear envelope, as well as the architecture and functions of the cytoskeleton in cells derived from two laminopathic mouse models, including Hutchinson-Gilford progeria syndrome (LmnaL530P/L530P) and Emery-Dreifuss muscular dystrophy (Lmna−/−). Cells derived from the overtly aphenotypical model of X-linked Emery-Dreifuss muscular dystrophy (Emd−/y) were also included. We find that the centrosome is detached from the nucleus, preventing centrosome polarization in cells under flow—defects that are mediated by the loss of emerin from the nuclear envelope. Moreover, while basal actin and focal adhesion structure are mildly affected, RhoA activation, cell-substratum adhesion, and cytoplasmic elasticity are greatly lowered, exclusively in laminopathic models in which the LINC complex is disrupted. These results indicate a new function for emerin in cell polarization and suggest that laminopathies are not directly associated with cells’ inability to polarize, but rather with cytoplasmic softening and weakened adhesion mediated by the disruption of the LINC complex across the nuclear envelope.  相似文献   

7.
Lamin A, a key component of the nuclear lamina, is generated from prelamin A by four post-translational processing steps: farnesylation, endoproteolytic release of the last three amino acids of the protein, methylation of the C-terminal farnesylcysteine, and finally, endoproteolytic release of the last 15 amino acids of the protein (including the farnesylcysteine methyl ester). The last cleavage step, mediated by ZMPSTE24, releases mature lamin A. This processing scheme has been conserved through vertebrate evolution and is widely assumed to be crucial for targeting lamin A to the nuclear envelope. However, its physiologic importance has never been tested. To address this issue, we created mice with a “mature lamin A-only” allele (LmnaLAO), which contains a stop codon immediately after the last codon of mature lamin A. Thus, LmnaLAO/LAO mice synthesize mature lamin A directly, bypassing prelamin A synthesis and processing. The levels of mature lamin A in LmnaLAO/LAO mice were indistinguishable from those in “prelamin A-only” mice (LmnaPLAO/PLAO), where all of the lamin A is produced from prelamin A. LmnaLAO/LAO exhibited normal body weights and had no detectable disease phenotypes. A higher frequency of nuclear blebs was observed in LmnaLAO/LAO embryonic fibroblasts; however, the mature lamin A in the tissues of LmnaLAO/LAO mice was positioned normally at the nuclear rim. We conclude that prelamin A processing is dispensable in mice and that direct synthesis of mature lamin A has little if any effect on the targeting of lamin A to the nuclear rim in mouse tissues.  相似文献   

8.
WW domain‐containing oxidoreductase (WWOX) is highly conserved in both human and murine. WWOX spans the second most common human chromosomal fragile site, FRA16D, and is commonly inactivated in multiple human cancers. Modeling WWOX inactivation in mice revealed a complex phenotype including postnatal lethality, defects in bone metabolism and steroidogenesis and tumor suppressor function resulting in osteosarcomas. For better understanding of WWOX roles in different tissues at distinct stages of development and in pathological conditions, Wwox conditional knockout mice were generated in which loxp sites flank exon 1 in the Wwox allele. We demonstrated that Cre‐mediated recombination using EIIA‐Cre, a Cre line expressed in germline, results in postnatal lethality by age of 3 weeks and decreased bone mineralization resembling total ablation of WWOX as in conventional null mice. This animal model will be useful to study distinct roles of WWOX in multiple tissues at different ages. J. Cell. Physiol. 228: 1377–1382, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Girdin is an Akt substrate and actin-binding protein. Mice with germ-line deletions of Girdin (a non-conditional knockout, (ncKO)) exhibit complete postnatal lethality accompanied by growth retardation and neuronal cell migration defects, which results in hypoplasia of the olfactory bulb and granule cell dispersion in the dentate gyrus. However, the physiological and molecular abnormalities in Girdin ncKO mice are not fully understood. In this study, we first defined the distribution of Girdin in neonates (P1) and adults (6 months or older) using β-galactosidase activity in tissues from ncKO mice. The results indicate that Girdin is expressed throughout the nervous system (brain, spinal cord, enteric and autonomic nervous systems). In addition, β-galactosidase activity was detected in non-neural tissues, particularly in tissues with high tensile force, such as tendons, heart valves, and skeletal muscle. In order to identify the cellular population where the Girdin ncKO phenotype originates, newly generated Girdin flox mice were crossed with nestin promoter-driven Cre transgenic mice to obtain Girdin conditional knockout (cKO) mice. The phenotype of Girdin cKO mice was almost identical to ncKO mice, including postnatal lethality, growth retardation and decreased neuronal migration. Our findings indicate that loss of Girdin in the nestin cell lineage underlies the phenotype of Girdin ncKO mice.  相似文献   

10.
11.
Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtorflox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.  相似文献   

12.
The binary Cre-lox conditional knockout system requires an essential part of the target gene to be flanked by loxP sites, enabling excision in vivo upon Cre expression. LoxP sites are introduced by homologous recombination, together with a selectable marker. However, this marker can disturb gene expression and should be removed. The marker is therefore often prepared with a third, flanking loxP site (tri-lox construct), facilitating its selective removal by partial Cre-lox recombination. We have shown that this excision can be achieved in vivo in the germline using EIIaCre transgenic mice, and have described the advantages of in vivo over in vitro removal. We show here that MeuCre40, a new transgenic mouse, more reliably and reproducibly generates an optimal partial mosaic Cre-lox recombination pattern in the early embryo. This mosaicism was transmitted to the germline and to many other tissues. Alleles with partial deletions, in particular floxed alleles from which the selectable marker was removed, were readily recovered in the next generation, after segregation from the transgene. Segregation via paternal or maternal transmission led to successful recovery of the alleles of interest. We also obtained total deletion of the floxed regions in the same experiment, making this transgene a polyvalent Cre-lox tool. We rigorously tested the ability of MeuCre40 to solve tri-lox problems, by using it for the in vivo removal of neoR- and hprt-expression cassettes from three different tri-lox mutants.  相似文献   

13.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the accumulation of a farnesylated form of prelamin A (progerin). Previously, we showed that blocking protein farnesylation with a farnesyltransferase inhibitor (FTI) ameliorates the disease phenotypes in mouse model of HGPS (LmnaHG/+). However, the interpretation of the FTI treatment studies is open to question in light of recent studies showing that mice expressing a nonfarnesylated version of progerin (LmnanHG/+) develop progeria-like disease phenotypes. The fact that LmnanHG/+ mice manifest disease raised the possibility that the beneficial effects of an FTI in LmnaHG/+ mice were not due to the effects of the drug on the farnesylation of progerin, but may have been due to unanticipated secondary effects of the drug on other farnesylated proteins. To address this issue, we compared the ability of an FTI to improve progeria-like disease phenotypes in both LmnaHG/+ and LmnanHG/+ mice. In LmnaHG/+ mice, the FTI reduced disease phenotypes in a highly significant manner, but the drug had no effect in LmnanHG/+ mice. The failure of the FTI to ameliorate disease in LmnanHG/+ mice supports the idea that the beneficial effects of an FTI in LmnaHG/+ mice are due to the effect of drug on the farnesylation of progerin.  相似文献   

14.
To investigate the role of liver-specific expression of glucokinase (GCK) in the pathogenesis of hyperglycemia and to identify candidate genes involved in mechanisms of the onset and progression of maturity onset diabetes of the young, type 2 (MODY-2), we examined changes in biochemical parameters and gene expression in GCK knockout (gckw/–) and wild-type (gckw/w) mice as they aged. Fasting blood glucose levels were found to be significantly higher in the gckw/– mice, compared to age-matched gckw/w mice, at all ages (P < 0.05), except at 2 weeks. GCK activity of gckw/– mice was about 50% of that of wild type (gckw/w) mice (P < 0.05). Glycogen content at 4 and 40 weeks of age was lower in gckw/– mice compared to gckw/w mice. Differentially expressed genes in the livers of 2 and 26 week-old liver-specific GCK knockout (gckw/–) mice were identified by suppression subtractive hybridization (SSH), which resulted in the identification of phosphoenolpyruvatecarboxykinase (PEPCK, also called PCK1) and Sterol O-acyltransferase 2 (SOAT2) as candidate genes involved in pathogenesis. The expressions of PEPCK and SOAT2 along with glycogen phosphorylase (GP) and glycogen synthase (GS) were then examined in GCK knockout (gckw/–) and wild-type (gckw/w) mice at different ages. Changes in PEPCK mRNA levels were confirmed by real-time RT-PCR, while no differences in the levels of expression of SOAT2 or GS were observed in age-matched GCK knockout (gckw/–) and wild-type (gckw/w) mice. GP mRNA levels were decreased in 40-week old gckw/– mice compared to age-matched gckw/w mice. Changes in gluconeogenesis, delayed development of GCK and impaired hepatic glycogen synthesis in the liver potentially lead to the onset and progression of MODY2.  相似文献   

15.
Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ERT2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ERT2) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ERT2 activity was first evaluated by crossing SPC-Cre-ERT2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ERT2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ERT2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ERT2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1fx/fx). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ERT2/TSC1fx/fx mice. Therefore this SPC-Cre-ERT2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.  相似文献   

16.
Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.  相似文献   

17.
18.
Collagen XI is a fibril-forming collagen that regulates collagen fibrillogenesis. Collagen XI is normally associated with collagen II-containing tissues such as cartilage, but it also is expressed broadly during development in collagen I-containing tissues, including tendons. The goals of this study are to define the roles of collagen XI in regulation of tendon fibrillar structure and the relationship to function. A conditional Col11a1-null mouse model was created to permit the spatial and temporal manipulation of Col11a1 expression. We hypothesize that collagen XI functions to regulate fibril assembly, organization and, therefore, tendon function. Previous work using cho mice with ablated Col11a1 alleles supported roles for collagen XI in tendon fibril assembly. Homozygous cho/cho mice have a perinatal lethal phenotype that limited the studies. To circumvent this, a conditional Col11a1flox/flox mouse model was created where exon 3 was flanked with loxP sites. Breeding with Scleraxis-Cre (Scx-Cre) mice yielded a tendon-specific Col11a1-null mouse line, Col11a1Δten/Δten. Col11a1flox/flox mice had no phenotype compared to wild type C57BL/6 mice and other control mice, e.g., Col11a1flox/flox and Scx-Cre. Col11a1flox/flox mice expressed Col11a1 mRNA at levels comparable to wild type and Scx-Cre mice. In contrast, in Col11a1Δten/Δten mice, Col11a1 mRNA expression decreased to baseline in flexor digitorum longus tendons (FDL). Collagen XI protein expression was absent in Col11a1Δten/Δten FDLs, and at ~50% in Col11a1+/Δten compared to controls. Phenotypically, Col11a1Δten/Δten mice had significantly decreased body weights (p < 0.001), grip strengths (p < 0.001), and with age developed gait impairment becoming hypomobile. In the absence of Col11a1, the tendon collagen fibrillar matrix was abnormal when analyzed using transmission electron microscopy. Reducing Col11a1 and, therefore collagen XI content, resulted in abnormal fibril structure, loss of normal fibril diameter control with a significant shift to small diameters and disrupted parallel alignment of fibrils. These alterations in matrix structure were observed in developing (day 4), maturing (day 30) and mature (day 60) mice. Altering the time of knockdown using inducible I-Col11a1−/− mice indicated that the primary regulatory foci for collagen XI was in development. In mature Col11a1Δten/Δten FDLs a significant decrease in the biomechanical properties was observed. The decrease in maximum stress and modulus suggest that fundamental differences in the material properties in the absence of Col11a1 expression underlie the mechanical deficiencies. These data demonstrate an essential role for collagen XI in regulation of tendon fibril assembly and organization occurring primarily during development.  相似文献   

19.
20.
Drosophila RNase ZL (dRNaseZ) belongs to a family of endoribonucleases with a major role in tRNA 3′-end processing. The biochemical function of RNase ZL is conserved from yeast to human. Here we present a study of its biological function during Drosophila development. In flies, dRNaseZ provides a non-redundant function, as the RNZED24 knockout (KO) mutation causes early larval lethality. Mosaic and conditional rescue techniques were employed to determine dRNaseZ requirements at later stages. We found that dRNaseZ activity is essential for all phases of fly development that involve cell division, including growth of adult tissue progenitors during larval and metamorphic stages, and gametogenesis in adults. At the cellular level, two major phenotypes were identified—cell growth deficiency in endoreplicating tissues and cell cycle arrest in mitotic tissues. While cell growth and proliferation are both dependant on protein synthesis, the two phenotypes displayed reliance on different dRNaseZ functions. We found that dRNaseZ KO completely blocks tRNA maturation without diminishing the abundance of mature tRNA molecules. Our data indicate that growth arrest of endoreplicating cells is primarily attributed to the relocation of the pool of mature tRNAs into the nuclei causing a decrease in translation efficiency. Mitotically dividing cells appear to be less dependent on translation machinery as they maintain their normal size when deprived of dRNaseZ activity, but rather display a cell cycle arrest at the G2–M transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号