首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Bacterial spores in a metabolically dormant state can survive long periods without nutrients under extreme environmental conditions. The molecular basis of spore dormancy is not well understood, but the distribution and physical state of water within the spore is thought to play an important role. Two scenarios have been proposed for the spore’s core region, containing the DNA and most enzymes. In the gel scenario, the core is a structured macromolecular framework permeated by mobile water. In the glass scenario, the entire core, including the water, is an amorphous solid and the quenched molecular diffusion accounts for the spore’s dormancy and thermal stability. Here, we use 2H magnetic relaxation dispersion to selectively monitor water mobility in the core of Bacillus subtilis spores in the presence and absence of core Mn2+ ions. We also report and analyze the solid-state 2H NMR spectrum from these spores. Our NMR data clearly support the gel scenario with highly mobile core water (∼25 ps average rotational correlation time). Furthermore, we find that the large depot of manganese in the core is nearly anhydrous, with merely 1.7% on average of the maximum sixfold water coordination.  相似文献   

2.
Sporangiospores of Blakeslea trispora are in a state of exogenous dormancy, and water is the key factor controlling their germination. A wide range of carbohydrates, ammonium salts, and yeast extract had a weak stimulating effect (less than 50%) on spore germination, whereas amino acids could significantly inhibit this process. Cultivation of B. trispora on sporogenous sucrose- and trehalose-containing media (S and T spores, respectively) resulted in significant changes in spore formation, as well as in the chemical composition of spores and their viability. In the presence of trehalose, the amount of spores increased twofold; spore viability during storage increased as well. All changes in the carbohydrate composition of the cytosol and in the composition of the spore membrane lipids indicated that the dormancy of T spores was deeper than that of S spores, which has a favorable effect on their viability.  相似文献   

3.
This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium.  相似文献   

4.
Aspergillus nigerconidia are characterized by exogenous dormancy: the first stage of their germination is accomplished in twice-distilled water. However, germ tube formation requires the availability of carbon and nitrogen sources. Exogenous dormancy in A. nigerconidia exhibits the following peculiar features: (i) nitrogen-containing substances are active stimulators of germination; (ii) temperature-dependent changes in the lipid bilayer and in the neutral lipid composition of conidia are virtually identical to those occurring in growing mycelium under temperature stress; and (iii) the spore viability threshold does not exceed 45°C; i.e., the spores are more heat-resistant than the mycelium, but they are less heat-resistant than the spores that are in the state of endogenous dormancy. According to the current classification of the types of cell metabolism arrest, the exogenous dormancy of A. nigerconidia resembles the pattern of metabolism characteristic of vegetative cells during the idiophase.  相似文献   

5.
Comparative analysis of germination of asexual sporulation spores (conidia and sporangiospores) and of specific features of dormancy release was carried out for ascomycete mycelial fungi Aspergillus tamarii VKM F-64 and A. sydowii VKM F-441, as well as for zygomycete fungi Cunninghamella echinulata VKM F-663 and Umbelopsis ramanniana VKM F-582. The spores of these strains were shown to be in a state of exogenous dormancy and differed in lag phase duration and germination rate, which depended on the presence of nutrients in the medium. Only the strain C. echinulata VKM F-663 exhibited 100% spore germination, with the germination rate and lag phase duration not depending on the composition of the medium. While in A. tamarii strain VKM F-64, the total number of spores germinating on rich and poor media was also almost the same, in the absence of nutrients lag phase duration increased and the germination rate decreased. For strains U. ramanniana VKM F-582 and A. sydowii VKM F-441, the degree of spore germination in the absence of nutrients in the medium was considerably lower than on the rich medium, while the lag phase was longer. These data indicate that the spores of C. echinulata VKM F-663 are in the state of exogenous dormancy, which does not require for release any compounds except water. The spores of U. ramanniana strain VKM F-582 and of the Aspergillus strains exhibited another variant of exogenous dormancy, which required for release, apart from water, also the sources of carbon and nitrogen. Thus, the character of dormancy release may differ even within a single genus (Aspergillus).  相似文献   

6.
The role of water, its distribution and its implication in the heat resistance of dried spores was investigated using DSC (Differential Scanning Calorimetry). Bacillus subtilis spores equilibrated at different water activity levels were heat treated under strictly controlled conditions. The temperature was increased linearly in pans with different resistances to pressure. Data from the heat-related transitions occurring in the spores were recorded and spore viability was assessed at different stages during DSC. The thermodynamic transitions observed were related to the water status in the spores and spore survival. The results demonstrated that water still remained in the spore core when water activity was as low as 0.13. The first transition occurred at around 150 °C and was assumed to be related to a mobile fraction of water from the outer layers of the spore. The second occurred at around 200 °C, which could correspond to a fraction of water embedded in the spore core. Moreover, the results showed that spore destruction during heating was favored by the amount of water remaining in the spore. The changes in their structure were also evaluated by FTIR (Fourier Transform Infrared Spectroscopy). This work offers new understanding about the distribution of water in spores and presents new elements on the heat resistance of spores in relation to their water content.  相似文献   

7.
Antitumor activity of the preparation of the lipid fraction of Clostridium butyricum spore extract was demonstrated in vivo on a transplantable mouse model of breast cancer. At a specific scheme of application, inhibition of tumor growth and improved survival dynamics compared to the control group were observed. Thin-layer chromatography (TLC) of the lipid fraction of the spore extract revealed, apart from a saturated hydrocarbon, cholesterol ester, cetyl palmitate, triacyl glycerol, and palmitic acid, also a phenolic lipid bound in a complex with a peptide component. Acetone extraction of the lipid pool revealed a phenolic lipid. According to the TLC and 1H-NMR spectrum of the acetone extract of the lipid fraction of C. butyricum spores, the structure of the phenolic lipid was proposed, n -butyl benzoate substituted in the para position. The phenolic lipid is suggested to be responsible for the biological activity of the spore’s lipid fraction.  相似文献   

8.
The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup.  相似文献   

9.
Summary The fine structure of honey-coloured, sessile Endogone spores is described from initiation of the mother spore to dormancy of the resting spore. Three unusual organelles occur viz. pigment granules, large crystals and selfduplicating bacteria-like organisms. The first two are very numerous, and are specifically associated with spore formation. The pigment granules are involved in the deposition of the honey-coloured wall, and change into myelin-like figures when cytoplasm moves from the mother into the resting spore. The crystals, whose function is not known, are most conspicuous just before the resting spore reaches dormancy. The bacteria-like organisms, which may be actinomycete spores living symbiotically in the fungus, multiphy greatly as the spore enters dormancy. The dormant spore contains very little cytoplasm compressed into a fine network between very large polygonal oil globules and large round bodies thought to contain a storage polysaccharide.  相似文献   

10.
The possible relationship between the water binding by bacterial endospores and their dormancy and heat resistances has been examined in terms of the coordination characteristics of the spore-bound calcium. Stabilities of the calcium complexes of typical cytoplasmic and structural spore components were determined by potentiometric equilibrium pH measurements in model systems consisting of DPA, glycine, alanine, glutamic acid, alanyl-glutamic acid, triglycine, and tetraglycine. The Ca++-form and H+-form spores of Clostridium botulinum 33A were investigated in vivo with respect to their water sorption and heat-resistance characteristics. The results suggest that the complexing of calcium and Ca(II)-DPA may be biologically significant for spore resistance and dormancy at the following three levels: (1) complexing with spore cytoplasmic pool constituents consistent with the idea of a metal-chelate cross-linked cytoplasm or spore cement stabilizing the essential biological macromolecules, (2) complexing with structural components of the spore as indicated by the interaction with model peptides, and (3) coordination with water to produce an apparently dehydrated environment in the spore as evident from the much greater water-sorption capacity of the Ca++-form spores vs the much smaller water sorption of the H+-form spores. Interestingly enough, DPA itself, in the absence of metal ion, showed some interaction with di-, tri-, and tetrapeptides and a weak but detectable interaction with amino acids. Although the exact mode of the DPA-peptide interaction is not clear, it is attractive to speculate about its possible involvement in the control of spore dormancy and resistance.  相似文献   

11.
The physicochemical properties of spores were studied in relationship of their structure, which was modulated by chemical or genetic methods. The Bacillus subtilis spores were equilibrated at different water activities (from 0.113 to ~1) and investigated by differential scanning calorimetry (DSC). The isothermal sorptions at 25 °C of the native and the modified spores were also used to analyse the DSC results. As already reported in literature, an endothermic peak in DSC was found at about 70 °C, but a previously unreported baseline shift, a ∆Cp step, was also observed at −69 °C. The endothermic peak found at 70 °C was assigned to a material relaxation which corresponded to a structure change from a less mobile state to a more mobile state. The spore cortex material seems to be mainly implicated in this event. The ∆Cp step observed at −69 °C was identified as a glass transition of the water in the spore protoplast. These results showed that at room temperature, the physical state of the components within B. subtilis spores equilibrated at water activity levels below 0.3 was different: The cortex material is in a low mobility state whereas confined structure of protoplast and its internal hydration level allow a certain mobility of water molecules.  相似文献   

12.
It has been postulated that the heat stabilization of the essential macromolecules in the core of the spore may be produced by dehydration at two levels: (i) the spore is drier at high relative humidity than the vegetative cell and (ii) the core of the spore may be less hydrated than the cortex and the coat. The latter postulate was subjected to experimental testing by 1H-NMR studies of the water signal in the five species of spores and coat and (coat + cortex) preparations. The transverse relaxation rate (1T2) was determined in samples equilibrated at constant relative humidity. To allow for the effect of paramagnetic ions on 1T2 a model system (wool keratin) was studied in the presence of known amounts of Ca(II), Mn(II), Cu(II), Ni(II) and Fe(III). Because of the dominant effect of Mn(II) on 1T2, the effect of small amounts of other metal ions in spores was neglected. The relaxation rate of water at a particular relative humidity and manganese concentration was consistently less for intact spores than for coat or coat + cortex, hence the water in the core is more mobile than in the outer integuments. Sorption isotherm studies have shown that at a particular relative humidity there is about as much water in the core as in the cortex and coat. These two results taken together indicate that the hypothesis that the core is drier than the cortex and coat is incorrect, hence the spore is not heat-stabilized in this way. A theory is proposed in which heat stabilization is attributed to immobilization of essential enzymes and nuclei acids by a solid support, calcium dipicolinate, in a similar fashion to the heat stabilization of enzymes in a charged polymer matrix. It is proposed that stabilization is effected by electrostatic and hydrogen bonds between the calcium dipicolinate and the essential macromolecules. Experiments in progress show that enzymes and DNA are heat-stabilized in vitro by calcium dipicolinate.  相似文献   

13.
We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4 ns, upon viscosity increase from 1 to 1500 cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000 cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600 cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress.  相似文献   

14.
A general model for use in interpreting dielectric data obtained with bacterial endospores is developed and applied to past results for Bacillus cereus spores and new results for Bacillus megaterium spores. The latter were also subjected to a decoating treatment to yield dormant cells with damaged outer membranes that could be germinated with lysozyme. For both spore types, core ions appeared to be completely immobilized, and decoating of B. megaterium spores did not affect this extreme state of electrostasis in the core. The cortex of B. megaterium appeared to contain a high level of mobile ions, in the cortex of B. cereus. The outer membrane-coat complex of B. megaterium acted dielectrically as an insulating layer around the cortex, so that native dormant spores showed a Maxwell-Wagner dispersion over the frequency range from about 1 to 20 MHz. The decoating treatment resulted in a shift in the dispersion to frequencies below the range of observation. Increases in cell conductivity in response to increases in environmental ionic strength indicated that the coats. of B. megaterium could be penetrated by environmental ions and that they had an inherent fixed charge concentration of about 10 to 20 milliequivalents per liter. In contrast, the dispersion for B. cereus spores was very sensitive to changes in environmental ion concentration, and it appeared that some 40% of the spore volume could be penetrated by environmental ions and that these ions traversed a dielectrically effective layer, either the exosporium or the outer membrane. It appears that dormancy is associated with extreme electrostasis of core ions but not necessarily of ions in enveloping structures and that the coat-outer membrane complex is dielectrically effective but not required for maintenance of extreme electrostasis in the core.  相似文献   

15.
The soil‐borne potato pathogen Spongospora subterranea persists in soil as sporosori, which are aggregates of resting spores. Resting spores may germinate in the presence of plant or environmental stimuli, but direct evidence for resting spore dormancy is limited. A soilless tomato bait plant bioassay and microscopic examination were used to examine features of S. subterranea resting spore dormancy and infectivity. Dried sporosori inocula prepared from tuber lesions and root galls were infective after both short‐ and long‐term storage (1 week to 5 years for tuber lesions and 1 week to 1 year for root galls) with both young and mature root galls inocula showing infectivity. This demonstrated that a proportion of all S. subterranea resting spores regardless of maturity exhibit characteristics of stimuli‐responsive dormancy, germinating under the stimulatory conditions of the bait host plant bioassay. However, evidence for constitutive dormancy within the resting spore population was also provided as incubation of sporosorus inoculum in a germination‐stimulating environment did not fully exhaust germination potential even after 2.4 years. We conclude that S. subterranea sporosori contain both exogenous (stimuli‐responsive) and constitutively dormant resting spores, which enables successful host infection by germination in response to plant stimuli and long‐term persistence in the soil.  相似文献   

16.
Germination of Bacillus megaterium QM B1551 spores can be triggered by L-proline chloromethyl ketone at ~ 10 fold lower concentrations than L-proline. [3H] L-proline chloromethyl ketone bound to several protein fractions, one of which was decreased in a mutant (JV137) that cannot be triggered by L-proline. Treatment of spores with [3H] acetic anhydride specifically inhibited L-proline triggered germination, and also covalently modified the same protein fraction which appears to be bound to the spore membrane. These results indicate that it is possible to identify a protein fraction in spores that may play a key role in triggering spore germination.  相似文献   

17.
Aims: To determine effects of inner membrane lipid composition on Bacillus subtilis sporulation and spore properties. Methods and Results: The absence of genes encoding lipid biosynthetic enzymes had no effect on B. subtilis sporulation, although the expected lipids were absent from spores’ inner membrane. The rate of spore germination with nutrients was decreased c. 50% with mutants that lacked the major cardiolipin (CL) synthase and another enzyme for synthesis of a major phospholipid. Spores lacking the minor CL synthase or an enzyme essential for glycolipid synthesis exhibited 50–150% increases in rates of dodecylamine germination, while spores lacking enzymes for phosphatidylethanolamine (PE), phosphatidylserine (PS) and lysylphosphatidylglycerol (l‐PG) synthesis exhibited a 30–50% decrease. Spore sensitivity to H2O2 and tert‐butylhydroperoxide was increased 30–60% in the absence of the major CL synthase, but these spores’ sensitivity to NaOCl or Oxone? was unaffected. Spores of lipid synthesis mutants were less resistant to wet heat, with spores lacking enzymes for PE, PS or l‐PG synthesis exhibiting a two to threefold decrease and spores of other strains exhibiting a four to 10‐fold decrease. The decrease in spore wet heat resistance correlated with an increase in core water content. Conclusions: Changing the lipid composition of the B. subtilis inner membrane did not affect sporulation, although modest effects on spore germination and wet heat and oxidizing agent sensitivity were observed, especially when multiple lipids were absent. The increases in rates of dodecylamine germination were likely due to increased ability of this compound to interact with the spore’s inner membrane in the absence of some CL and glycolipids. The effects on spore wet heat sensitivity are likely indirect, because they were correlated with changes in core water content. Significance and Impact of the Study: The results of this study provide insight into roles of inner membrane lipids in spore properties.  相似文献   

18.
Spores of Bacillus megaterium, Bacillus cereus, and Bacillus subtilis were found to exhibit intrinsic paramagnetic properties as a result of the accumulation of manganese ions. All three Bacillus species displayed strong yet distinctive magnetic properties arising from differences in manganese quantity and valency. Manganese ions were found to accumulate both within the spore core as well as being associated with the surface of the spore. Bacillus megaterium spores accumulated up to 1 wt.% manganese (II) within, with a further 0.6 wt.% adsorbed onto the surface. At room temperature, Bacillus spores possess average magnetic susceptibilities in the range of 10−6 to 10−5. Three spore‐related biotechnological applications—magnetic sensing, magnetic separation and metal ion adsorption—were assessed subsequently, with the latter two considered as having the most potential for development.
  相似文献   

19.
THE average content of DNA in Bacillus spores is unaffected by the growth medium and is constant for each species1. Within the Bacillus group, however, the average amount of DNA per spore varies from species to species1. A cell of B. cereus contains on average twice as much DNA as the spore and during sporulation this DNA is divided equally between the spore and the sporangium2. Estimates3–5 of genome size vary from 1.3 × 109 to 10 × 109 daltons and the number of genomes per cell from 2 to 44–8. Some of these variations may be associated with differences within the cells rather than differences of methodolqgy; spores within a population vary not only in size and shape, but also in their content of stainable chromatin9. Moreover, in ‘Renografm’ density gradients10, spores band within a range of densities. If spores are taken from a narrow part of this range, regrown and rebanded, the original pattern of dispersal occurs, suggesting that spores in the same population normally show variation in density as well as in size (A. I. Aronson, personal communication).  相似文献   

20.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号