首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last decade, West Nile virus has spread rapidly via mosquito transmission from infected migratory birds to humans. One potential therapeutic approach to treating infection is to inhibit the virally encoded serine protease that is essential for viral replication. Here we report the crystal structure of the viral NS3 protease tethered to its essential NS2B cofactor and bound to a potent substrate-based tripeptide inhibitor, 2-naphthoyl-Lys-Lys-Arg-H (K= 41 nM), capped at the N-terminus by 2-naphthoyl and capped at the C-terminus by aldehyde. An important and unexpected feature of this structure is the presence of two conformations of the catalytic histidine suggesting a role for ligand stabilization of the catalytically competent His conformation. Analysis of other West Nile virus NS3 protease structures and related serine proteases supports this hypothesis, suggesting that the common catalytic mechanism involves an induced-fit mechanism.  相似文献   

2.
A series of 2-oxopiperazine derivatives were designed from the pyrrolopiperazinone cell-based screening hit 4 as a dengue virus inhibitor. Systematic investigation of the structure-activity relationship (SAR) around the piperazinone ring led to the identification of compound (S)-29, which exhibited potent anti-dengue activity in the cell-based assay across all four dengue serotypes with EC50 < 0.1 μM. Cross-resistant analysis confirmed that the virus NS4B protein remained the target of the new oxopiperazine analogs obtained via scaffold morphing from the HTS hit 4.  相似文献   

3.
The hepatitis C virus (HCV) NS5B polymerase is an attractive target for the development of novel and selective inhibitors of HCV replication. In this paper, the design, synthesis, and preliminary SAR studies of novel inhibitors of HCV NS5B polymerase based on the structure of tegobuvir have been described. The efforts to optimize the antiviral potency and reduce the treatment side effects with respect to genotype 1b resulted in the discovery of compound 3, which exhibited an EC50 of 1.163?nM and a CC50 >200?nM in a cell-based HCV replicon system assay. Additionally, testing for inhibition of the hERG channel showed a marked improvement over tegobuvir and the pharmacokinetic properties of compound 3 indicated that it was worthy of further investigation as a non-nucleoside inhibitor of HCV NS5B polymerase.  相似文献   

4.
We report the use of pharmacophore-based virtual screening as an efficient tool for the discovery of novel HCV polymerase inhibitors. A three-dimensional pharmacophore model for the HCV-796 binding site, NNI site IV inhibitor, to the enzyme was built by means of the structure-based focusing module in Cerius2 program. Using these models as a query for virtual screening, we produced a successful example of using pharmacophore-based virtual screening to identify novel compounds with HCV replicon assay through inhibition of HCV polymerization. Among the hit compounds, compounds 1 and 2 showed 56% and 48% inhibition of NS5B polymerization activity at 20 μM, respectively. In addition, compound 1 also exhibited replicon activity with EC50 value of 2.16 μM. Following up the initial hit, we obtained derivatives of compound 1 and evaluated polymerization inhibition activity and HCV replicon assay. These results provide information necessary for the development of more potent NS5B inhibitors.  相似文献   

5.
Xie X  Wang QY  Xu HY  Qing M  Kramer L  Yuan Z  Shi PY 《Journal of virology》2011,85(21):11183-11195
We report a novel inhibitor that selectively suppresses dengue virus (DENV) by targeting viral NS4B protein. The inhibitor was identified by screening a 1.8-million-compound library using a luciferase replicon of DENV serotype 2 (DENV-2). The compound specifically inhibits all four serotypes of DENV (50% effective concentration [EC(50)], 1 to 4 μM; and 50% cytotoxic concentration [CC(50)], >40 μM), but it does not inhibit closely related flaviviruses (West Nile virus and yellow fever virus) or nonflaviviruses (Western equine encephalomyelitis virus, Chikungunya virus, and vesicular stomatitis virus). A mode-of-action study suggested that the compound inhibits viral RNA synthesis. Replicons resistant to the inhibitor were selected in cell culture. Sequencing of the resistant replicons revealed two mutations (P104L and A119T) in the viral NS4B protein. Genetic analysis, using DENV-2 replicon and recombinant viruses, demonstrated that each of the two NS4B mutations alone confers partial resistance and double mutations confer additive resistance to the inhibitor in mammalian cells. In addition, we found that a replication defect caused by a lethal NS4B mutation could be partially rescued through trans complementation. The ability to complement NS4B in trans affected drug sensitivity when a single cell was coinfected with drug-sensitive and drug-resistant viruses. Mechanistically, NS4B was previously shown to interact with the viral NS3 helicase domain; one of the two NS4B mutations recovered in our resistance analysis-P104L-abolished the NS3-NS4B interaction (I. Umareddy, A. Chao, A. Sampath, F. Gu, and S. G. Vasudevan, J. Gen. Virol. 87:2605-2614, 2006). Collectively, the results suggest that the identified inhibitor targets the DENV NS4B protein, leading to a defect in viral RNA synthesis.  相似文献   

6.
Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes – NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.  相似文献   

7.
The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5′-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3′-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5′-terminus, a protruding 5′-terminus made the RNA 5′-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.  相似文献   

8.
Replacement of the benzimidazole core of allosteric Thumb Pocket 1 HCV NS5B finger loop inhibitors by more lipophilic indole derivatives provided up to 30-fold potency improvements in cell-based subgenomic replicon assays. Optimization of C-2 substitution on the indole core led to the identification of analogs with EC50 <100 nM and modulated the pharmacokinetic properties of the inhibitors based on preliminary data from in vitro ADME profiles and in vivo rat PK.  相似文献   

9.
Dengue virus is endemic throughout tropical and subtropical regions, and cause severe epidemic diseases. The NS2B/NS3 protease is a promising drug target for dengue virus. Herein, we report the discovery and modification of a novel class of thiadiazoloacrylamide derivatives with potent inhibitory activity against the NS2B/NS3 protease. Thiadiazolopyrimidinone 1 was firstly determined as a new chemical structure against NS2B/NS3 from a commercial compound library. Then, we sought to identify similar compounds with the thiadiazoloacrylamide core that would exhibit better activity. A series of analogues were synthesized and fourteen of them were identified with strong inhibitory activities, in which the nitrile group in the linker part was discovered as an essential group for the inhibitory activity. The best of these (8b) demonstrated an IC50 at 2.24 μM based on in vitro DENV2 NS2B-NS3pro assays.  相似文献   

10.
Flavivirus non-structural protein 4A (NS4A) induces membrane rearrangements to form viral replication complex and functions as interferon antagonist. However, other non-structural roles of NS4A protein in relation to virus life-cycle are poorly defined. This study elucidated if dengue virus (DENV) NS4A protein interacts with host proteins and contributes to viral pathogenesis by screening human liver cDNA yeast-two-hybrid library. Our study identified polypyrimidine tract-binding protein (PTB) as a novel interacting partner of DENV NS4A protein. We reported for the first time that PTB influenced DENV production. Gene-silencing studies showed that PTB did not have an effect on DENV entry and DENV RNA translation. Further functional studies revealed that PTB influenced DENV production by modulating negative strand RNA synthesis. This is the first study that enlightens the interaction of DENV NS4A protein with PTB, in addition to demonstrating the novel role of PTB in relation to mosquito-borne flavivirus life-cycle.  相似文献   

11.
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11?µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV.  相似文献   

12.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito‐borne diseases whereas ZIKV infection occasionally re‐emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β‐alanyl‐l ‐histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell‐based assays were performed to validate the computational results. Mode‐of‐inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode‐of‐inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.  相似文献   

13.
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.  相似文献   

14.
The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263–271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1–4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265–900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272–900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed “preinitiation” conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269–271 interact with the RdRp domain and suggests that residues 263–268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp.  相似文献   

15.
Described herein is the initial optimization of (+/−) N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide (1), a hit discovered in a high throughput screen run against the NS5B polymerase enzyme of the hepatitis C virus. This effort resulted in the identification of (S)-N-sec-butyl-6-((R)-3-(4-(trifluoromethoxy)benzylcarbamoyl)-4-(4-(trifluoromethoxy)phenylsulfonyl)piperazin-1-yl)pyridazine-3-carboxamide (2), that displayed potent replicon activities against HCV genotypes 1b and 1a (EC50 1b/1a = 7/89 nM).  相似文献   

16.
Chronic hepatitis C virus (HCV) infection is a worldwide public issue. In this study, we performed bioactivity-guided screening of the Lonicera hypoglauca Miq. crude extracts to find for naturally chemical entities with anti-HCV activity. Pheophytin a was identified from the ethanol-soluble fraction of L. hypoglauca that elicited dose-dependent inhibition of HCV viral proteins and RNA expression in both replicon cells and cell culture infectious system. Computational modeling revealed that pheophytin a can bind to the active site of HCV-NS3, suggesting that NS3 is a potent molecular target of pheophytin a. Biochemical analysis further revealed that pheophytin a inhibited NS3 serine protease activity with IC50 = 0.89 μM. Notably, pheophytin a and IFNα-2a elicited synergistic anti-HCV activity in replicon cells with no significant cytotoxicity. This study thereby demonstrates for the first time that pheophytin a is a potent HCV-NS3 protease inhibitor and offers insight for development of novel anti-HCV regimens.  相似文献   

17.
SAR analysis performed with a limited set of cyclopentane-containing macrocycles led to the identification of N-[17-[2-(4-isopropylthiazole-2-yl)-7-methoxy-8-methylquinolin-4-yloxy]-13-methyl-2,14-dioxo-3,13-diazatricyclo [13.3.0.04,6]octadec-7-ene-4-carbonyl](cyclopropyl)sulfonamide (TMC435350, 32c) as a potent inhibitor of HCV NS3/4A protease (Ki = 0.36 nM) and viral replication (replicon EC50 = 7.8 nM). TMC435350 also displayed low in vitro clearance and high permeability, which were confirmed by in vivo pharmacokinetic studies. TMC435350 is currently being evaluated in the clinics.  相似文献   

18.
19.
Dengue virus (DENV) encoded nonstructural one (NS1) is a 352 amino acid protein that exists in multiple oligomeric states and is conserved within the flavivirus family. Although NS1 has been heavily researched for its diagnostic utility, there is a gap in the understanding of its role in a range of viral processes, including replication and development of clinical pathologies such as vascular leakage. Many of these functions involve unknown interactions with viral and host proteins. This study describes the generation of a mouse monoclonal antibody (mAb 56.2) that reacts with NS1 from DENV1 and 2, and the expression of recombinant SUMOstar-tagged DENV2 NS1 (DENV2 S-NS1) in baculovirus. This is the first time dengue NS1 has been produced as a SUMOstar fusion with the S-tag increasing protein solubility and secretion compared with a non-S-tagged NS1 construct. The protein was readily purified using a mAb 56.2 immunoaffinity column and untagged NS1 was obtained by treatment with tobacco etch virus protease to remove the S-tag. Size exclusion chromatography and glycosylation assays showed that both secreted S-NS1, and cleaved NS1, are hexameric and glycosylated, and will be useful tools in elucidating dengue NS1 protein interactions and functions.  相似文献   

20.
The nonstructural protein 3 helicase (NS3h) of hepatitis C virus is a 3′-to-5′ superfamily 2 RNA and DNA helicase that is essential for the replication of hepatitis C virus. We have examined the kinetic mechanism of the translocation of NS3h along single-stranded nucleic acid with bases uridylate (rU), deoxyuridylate (dU), and deoxythymidylate (dT), and have found that the macroscopic rate of translocation is dependent on both the base moiety and the sugar moiety of the nucleic acid, with approximate macroscopic translocation rates of 3 nt s− 1 (oligo(dT)), 35 nt s− 1 (oligo(dU)), and 42 nt s− 1 (oligo(rU)), respectively. We found a strong correlation between the macroscopic translocation rates and the binding affinity of the translocating NS3h protein for the respective substrates such that weaker affinity corresponded to faster translocation. The values of K0.5 for NS3h translocation at a saturating ATP concentration are as follows: 3.3 ± 0.4 μM nucleotide (poly(dT)), 27 ± 2 μM nucleotide (poly(dU)), and 36 ± 2 μM nucleotide (poly(rU)). Furthermore, results of the isothermal titration of NS3h with these oligonucleotides suggest that differences in TΔS0 are the principal source of differences in the affinity of NS3h binding to these substrates. Interestingly, despite the differences in macroscopic translocation rates and binding affinities, the ATP coupling stoichiometries for NS3h translocation were identical for all three substrates (∼ 0.5 ATP molecule consumed per nucleotide translocated). This similar periodicity of ATP consumption implies a similar mechanism for NS3h translocation along RNA and DNA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号