首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.  相似文献   

2.
The recently developed laser‐induced cell transfection mediated by Au nanoparticles is a promising alternative to the well‐established lipid‐based transfection or to electroporation. Optoporation is based on the laser plasmonic heating of nanoparticles located near the cell membrane. However, the uncontrollable cell damage from intense laser pulses and from random attachment of nanoparticles may be crucial for transfection. We present a novel plasmonic optoporation technique that uses Au nanostar layers immobilized in culture microplate wells. HeLa cells were grown directly on Au nanostar layers, after which they were subjected to continuous‐wave 808 nm laser irradiation. An Au monolayer density ~15 μg/cm2 and an absorbed energy of about 15 to 30 J were found to be optimal for optoporation. Propidium iodide molecules were used as model penetrating agent. The transfection efficiency evaluated using fluorescence microscopy for HeLa cells transfected with pGFP under optimized optoporation conditions (95% ± 5%) was similar to the efficiency of TurboFect. The technique's efficiency (295 ± 10 relative light units, RLU), demonstrated by transfecting HeLa cells with the pCMV‐GLuc 2 control plasmid, was greater than that obtained by transfection of HeLa cells with the TurboFect agent (220 ± 10 RLU). The cell viability in plasmonic optoporation (92% ± 7%), too, was greater than that in transfection with TurboFect (75% ± 7%).   相似文献   

3.
Electroporation, in which electric pulses create transient pores in the cell membrane, is becoming an important technique for gene therapy. To enable entry of supercoiled DNA into cells, the pores should have sufficiently large radii (>10 nm), remain open long enough for the DNA chain to enter the cell (milliseconds), and should not cause membrane rupture. This study presents a model that can predict such macropores. The distinctive features of this model are the coupling of individual pores through membrane tension and the electrical force on the pores, which is applicable to pores of any size. The model is used to explore the process of pore creation and evolution and to determine the number and size of pores as a function of the pulse magnitude and duration. Next, our electroporation model is combined with a heuristic model of DNA uptake and used to predict the dependence of DNA uptake on pulsing parameters. Finally, the model is used to examine the mechanism of a two-pulse protocol, which was proposed specifically for gene delivery. The comparison between experimental results and the model suggests that this model is well-suited for the investigation of electroporation-mediated DNA delivery.  相似文献   

4.
Thermal inkjet printing technology has been applied successfully to cell printing. However, there are concerns that printing process may cause cell damages or death. We conducted a comprehensive study of thermal inkjet printed Chinese hamster ovary (CHO) cells by evaluating cell viability and apoptosis, and possible cell membrane damages. Additionally, we studied the cell concentration of bio‐ink and found optimum printing of concentrations around 8 million cells per mL. Printed cell viability was 89% and only 3.5% apoptotic cells were observed after printing. Transient pores were developed in the cell membrane of printed cells. Cells were able to repair these pores within 2 h after printing. Green fluorescent protein (GFP) DNA plasmids were delivered to CHO‐S cells by co‐printing. The transfection efficiency is above 30%. We conclude that thermal inkjet printing technology can be used for precise cell seeding with minor effects and damages to the printed mammalian cells. The printing process causes transient pores in cell membranes, a process which has promising applications for gene and macroparticles delivery to induce the biocompatibility or growth of engineered tissues. Biotechnol. Bioeng. 2010;106: 963–969. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Fast digital imaging was used to study the deformation and poration of giant unilamellar vesicles subjected to electric pulses. For the first time the dynamics of response and relaxation of the membrane at micron-scale level is revealed at a time resolution of 30 micros. Above a critical transmembrane potential the lipid bilayer ruptures. Formation of macropores (diameter approximately 2 microm) with pore lifetime of approximately 10 ms has been detected. The pore lifetime has been interpreted as interplay between the pore edge tension and the membrane viscosity. The reported data, covering six decades of time, show the following regimes in the relaxation dynamics of the membrane. Tensed vesicles first relax to release the acquired stress due to stretching, approximately 100 micros. In the case of poration, membrane resealing occurs with a characteristic time of approximately 10 ms. Finally, for vesicles with excess area an additional slow regime was observed, approximately 1 s, which we associate with relaxation of membrane curvature. Dimensional analysis can reasonably well explain the corresponding characteristic timescales. Being performed on cell-sized giant unilamellar vesicles, this study brings insight to cell electroporation. The latter is widely used for gene transfection and drug transport across the membrane where processes occurring at different timescales may influence the efficiency.  相似文献   

6.
P M Ghosh  C R Keese    I Giaever 《Biophysical journal》1993,64(5):1602-1609
When an electrical potential of order one volt is induced across a cell membrane for a fraction of a second, temporary breakdown of ordinary membrane functions may occur. One result of such a breakdown is that molecules normally excluded by the membrane can now enter the cells. This phenomenon, generally referred to as electropermeabilization, is known as electroporation when actual pores form in the membrane. This paper presents a unique approach to the measurement of pore formation and closure in anchored mammalian cells. The cells are cultured on small gold electrodes, and by constantly monitoring the impedance of the electrode with a low-amplitude AC signal, small changes in cell morphology, cell motion, and membrane resistance can be detected. Because the active electrode is small, the application of a few volts across the cell-covered electrode causes pore formation in the cell membrane. In addition, the heat transfer is very efficient, and the cells can be porated in their regular growth medium. By this method, the formation and resealing of pores due to applied electric fields can be followed in real time for anchorage-dependent cells.  相似文献   

7.
Electropermeabilization is a nonviral method used to transfer genes into living cells. Up to now, the mechanism is still to be elucidated. Since cell permeabilization, a prerequired for gene transfection, is triggerred by electric field, its characteristics should depend on its vectorial properties. The present investigation addresses the effect of pulse polarity and orientation on membrane permeabilization and gene delivery by electric pulses applied to cultured mammalian cells. This has been directly observed at the single-cell level by using digitized fluorescence microscopy. While cell permeabilization is only slightly affected by reversing the polarity of the electric pulses or by changing the orientation of pulses, transfection level increases are observed. These last effects are due to an increase in the cell membrane area where DNA interacts. Fluorescently labelled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable and is not affected by pulses of reversed polarities. Under such conditions, DNA interacts with the two sites of the cell facing the two electrodes. When changing both the pulse polarity and their direction, DNA interacts with the whole membrane cell surface. This is associated with a huge increase in gene expression. This present study demonstrates the relationship between the DNA/membrane surface interaction and the gene transfer efficiency, and it allows to define the experimental conditions to optimize the yield of transfection of mammalian cells.  相似文献   

8.
Cells can be transiently permeabilized by exposing them briefly to an intense electric field (a process called "electroporation"), but it is not clear what structural changes the electric field induces in the cell membrane. To determine whether membrane pores are actually created in the electropermeabilized cells, rapid-freezing electron microscopy was used to examine human red blood cells which were exposed to a radio-frequency electric field. Volcano-shaped membrane openings appeared in the freeze-fracture faces of electropermeabilized cell membranes at intervals as short as 3 ms after the electrical pulse. We suggest that these openings represent the membrane pathways which allow entry of macromolecules (such as DNA) during electroporation. The pore structures rapidly expand to 20-120 nm in diameter during the first 20 ms of electroporation, and after several seconds begin to shrink and reseal. The distribution of pore sizes and pore dynamics suggests that interactions between the membrane and the submembrane cytoskeleton may have an important role in the formation and resealing of pores.  相似文献   

9.
G Saulis 《Biophysical journal》1997,73(3):1299-1309
The process of pore disappearance after cell electroporation is analyzed theoretically. On the basis of the kinetic model, in which the formation and annihilation of a metastable hydrophilic pore are considered as random one-step processes, a distribution function of cell resealing times, Fr(t), is derived. Two cases are studied: 1) the rate of pore resealing, k(r), is significantly greater than the rate of pore formation, k(f); and 2) the rate of pore formation, k(f), is comparable with k(r). It is determined that the shape of the distribution function depends on the initial number of pores in a cell, n(i). If in the absence of an external electric field the rate of pore formation, k(f), is significantly less than the rate of pore resealing, k(r) (case 1), pores disappear completely, whereas when k(f) approximately k(r) (case 2), the cell achieves a steady state in which the number of pores is equal to k(f)/k(r). In case 1, when n(i) = 1, the distribution function Fr(t) is exponential. The developed theory is compared with experimental data available in the literature. Increasing the time of incubation at elevated temperature increases the fraction of resealed cells. This indicates that the time necessary for the resealing varies from cell to cell. Although the shape of experimental relationships depends on the electroporation conditions they can be described by theoretical curves quite well. Thus it can be concluded that the disappearance of pores in the cell membrane after electroporation is a random process. It is shown that from the comparison of presented theory with experiments, the following parameters can be estimated: the average number of pores, n(i), that appeared in a cell during an electric pulse; the rate of pore disappearance, k(r); the ratio k(f)/k(r); and the energy barrier to pore disappearance deltaWr(0). Estimated numerical values of the parameters show that increasing the amplitude of an electric pulse increases either the apparent number of pores created during the pulse (the rate of pore resealing remains the same) or the rate of pore resealing (the average number of pores remains the same).  相似文献   

10.
Electroporation uses electric pulses to promote delivery of DNA and drugs into cells. This study presents a model of electroporation in a spherical cell exposed to an electric field. The model determines transmembrane potential, number of pores, and distribution of pore radii as functions of time and position on the cell surface. For a 1-ms, 40 kV/m pulse, electroporation consists of three stages: charging of the cell membrane (0-0.51 micros), creation of pores (0.51-1.43 micros), and evolution of pore radii (1.43 micros to 1 ms). This pulse creates approximately 341,000 pores, of which 97.8% are small ( approximately 1 nm radius) and 2.2% are large. The average radius of large pores is 22.8 +/- 18.7 nm, although some pores grow to 419 nm. The highest pore density occurs on the depolarized and hyperpolarized poles but the largest pores are on the border of the electroporated regions of the cell. Despite their much smaller number, large pores comprise 95.3% of the total pore area and contribute 66% to the increased cell conductance. For stronger pulses, pore area and cell conductance increase, but these increases are due to the creation of small pores; the number and size of large pores do not increase.  相似文献   

11.
Pluripotent stem cells are hugely attractive in the tissue engineering research field as they can self‐renew and be selectively differentiated into various cell types. For stem cell and tissue engineering research it is important to develop new, biocompatible scaffold materials and graphene has emerged as a promising material in this area as it does not compromise cell proliferation and accelerates specific cell differentiation. Previous studies have shown a non‐invasive optical technique for mouse embryonic stem (mES) cell differentiation and transfection using femtosecond (fs) laser pulses. To investigate cellular responses to the influence of graphene and laser irradiation, here we present for the first time a study of mES cell fs laser transfection on graphene coated substrates. First we studied the impact of graphene on Chinese Hamster Ovary (CHO‐K1) cell viability and cell cytotoxicity in the absence of laser exposure. These were tested via evaluating the mitochondrial activity through adenosine triphosphates (ATP) luminescence and breakages on the cell plasma membrane assessed using cytosolic lactate dehydrogenase (LDH) screening. Secondly, the effects of fs laser irradiation on cell viability and cytotoxicity at 1064 and 532 nm for cells plated and grown on graphene and pure glass were assessed. Finally, optical transfection of CHO‐K1 and mES cells was performed on graphene coated versus plain glass substrates. Our results show graphene stimulated cell viability whilst triggering a mild release of intracellular LDH. We also observed that compared to pure glass substrates; laser irradiation at 1064 nm on graphene plates was less cytotoxic. Finally, in mES cells efficient optical transfection at 1064 (82%) and 532 (25%) nm was obtained due to the presence of a graphene support as compared to pristine glass. Here we hypothesize an up‐regulation of cell adhesion promoting peptides or laminin‐related receptors of the extracellular matrix (ECM) in cell samples grown and irradiated on graphene substrates. By bringing together advances in optics and nanomaterial sciences we demonstrate pathways for enhancement of pluripotent stem cell biology. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Electric fields of a few kV/cm and of duration in microseconds are known to implant pores of limited size in cell membranes. We report here a study of kinetics of pore formation and reversibility of pores. Loading of biologically active molecules was also attempted. For human erythrocytes in an isotonic saline, pores allowed passive Rb+ entry formed within 0.5 microsecond when a 4 kV/cm electric pulse was used. Pores that admitted oligosaccharides were introduced with an electric pulse of a longer duration in an isosmotic mixture of NaCl and sucrose. These pores were irreversible under most circumstances, but they could be resealed in an osmotically balanced medium. A complete resealing of pores that admitted Rb+ took approximately 40 min at 37 degrees C. Resealing of pores that admitted sucrose took much longer, 20 h, under similar conditions. In other cell types, resealing step may be omitted due to stronger membrane structures. Experimental protocols for loading small molecules into cells without losing cytoplasmic macromolecules are discussed.  相似文献   

13.
We have developed a gene transfection method called water-in-oil droplet electroporation (EP) that uses a dielectric oil and a liquid droplet containing live cells and exogenous DNA. When a cell suspension droplet is placed between a pair of electrodes, an intense DC electric field can induce droplet deformation, resulting in an instantaneous short circuit caused by the droplet elongating and contacting the two electrodes simultaneously. Small transient pores are generated in the cell membrane during the short, allowing the introduction of exogenous DNA into the cells. The droplet EP was characterized by varying the following experimental parameters: applied voltage, number of short circuits, type of medium (electric conductivity), concentration of exogenous DNA, and size of the droplet. In addition, the formation of transient pores in the cell membrane during droplet EP and the transfection efficiency were evaluated.  相似文献   

14.
《Biophysical journal》2022,121(17):3295-3302
Cell membranes are highly asymmetric and their stability against poration is crucial for survival. We investigated the influence of membrane asymmetry on electroporation of giant unilamellar vesicles with membranes doped with GM1, a ganglioside asymmetrically enriched in the outer leaflet of neuronal cell membranes. Compared with symmetric membranes, the lifetimes of micronsized pores are about an order of magnitude longer suggesting that pores are stabilized by GM1. Internal membrane nanotubes caused by the GM1 asymmetry, obstruct and additionally slow down pore closure, effectively reducing pore edge tension and leading to leaky membranes. Our results point to the drastic effects this ganglioside can have on pore resealing in biotechnology applications based on poration as well as on membrane repair processes.  相似文献   

15.
Membrane electropermeabilization relies on the transient permeabilization of the plasma membrane of cells submitted to electric pulses. This method is widely used in cell biology and medicine due to its efficiency to transfer molecules while limiting loss of cell viability. However, very little is known about the consequences of membrane electropermeabilization at the molecular and cellular levels. Progress in the knowledge of the involved mechanisms is a biophysical challenge. As a transient loss of membrane cohesion is associated with membrane permeabilization, our main objective was to detect and visualize at the single-cell level the incidence of phospholipid scrambling and changes in membrane order. We performed studies using fluorescence microscopy with C6-NBD-PC and FM1-43 to monitor phospholipid scrambling and membrane order of mammalian cells. Millisecond permeabilizing pulses induced membrane disorganization by increasing the translocation of phosphatidylcholines according to an ATP-independent process. The pulses induced the formation of long-lived permeant structures that were present during membrane resealing, but were not associated with phosphatidylcholine internalization. These pulses resulted in a rapid phospholipid flip/flop within less than 1 s and were exclusively restricted to the regions of the permeabilized membrane. Under such electrical conditions, phosphatidylserine externalization was not detected. Moreover, this electrically-mediated membrane disorganization was not correlated with loss of cell viability. Our results could support the existence of direct interactions between the movement of membrane zwitterionic phospholipids and the electric field.  相似文献   

16.
Simian Cos-1 cells were transfected electrically with the plasmid pCH110 carrying the beta-galactosidase gene. The efficiency of transfection was determined by a transient expression of this gene. When the plasmid was introduced into a cell suspension 2 s after pulse application, the transfection efficiency was shown to be less than 1% as compared with a prepulse addition of DNA. Addition of DNAase to suspension immediately after a pulse did not decrease transfection efficiency, thus the time of DNA translocation was estimated to be less than 3 s. The use of electric treatment medium, in which the postpulse colloid-osmotic cell swelling was prevented, did not affect the transfection efficiency. These results contradict both assumptions of free DNA diffusion into cell through the long-lived pores and of involvement of osmotic effects in DNA translocation. Transfection of cells in monolayer on a porous film allowed creation of the spatial asymmetry of cell-plasmid interaction along the direction of electric field applied. A pulse with a polarity inducing DNA electrophoresis toward the cells resulted in the 10-fold excess of transfection efficiency compared with a pulse with reverse polarity. Ficoll (10%) which increases medium viscosity or Mg2+ ions (10 mM) which decrease the effective charge of DNA, both reduced transfection efficiency 2-3-fold. These results prove a significant role of DNA electrophoresis in the phenomenon considered. The permeability of cell membranes for an indifferent dye was shown to increase noticeably if the cells were pulsed in the presence of DNA. This indicates a possible interaction of DNA translocated with the pores in an electric field, that results in pore expansion.  相似文献   

17.
Qiu Y  Zhang C  Tu J  Zhang D 《Journal of biomechanics》2012,45(8):1339-1345
In the present work, human breast cancer cells MCF-7 mixed with polyethylenimine: deoxyribonucleic acid complex and microbubbles were exposed to 1-MHz ultrasound at low acoustic driving pressures ranging from 0.05 to 0.3 MPa. The sonoporation pores generated on the cell membrane were examined with scanning electron microscopy. The transfection efficiency and cell viability were evaluated with flow cytometry. The results showed that ultrasound sonication under the current exposure condition could generate cell pores with mean size ranging from about 100 nm to 1.25 μm, and that larger sonoporation pores would be generated with the increasing acoustic pressure or longer treatment time, leading to the enhancement of transfection efficiency and the reduction of cell viability. The simulations based on the Marmottant model were performed to test the hypothesis that the microstreaming-induced shear stress might be involved in the mechanisms of the low-intensity ultrasound induced sonoporation. The calculated shear stress resulting from the micro-streaming ranged from 15 to 680 Pa corresponding to the applied acoustic pressures 0.05-0.3 MPa, which is sufficient to induce reversible sonoporation. This study indicates that the shear stress related bio-effects may provide a base for strategies aimed at targeted drug delivery.  相似文献   

18.
Nanoparticles of compacted DNA transfect postmitotic cells   总被引:6,自引:0,他引:6  
Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore.  相似文献   

19.
Electroporation is a process where increased permeability of cells exposed to an electric field is observed. It is used in many biomedical applications including electrogene transfection and electrochemotherapy. Although the increased permeability of the membrane is believed to be the result of pores due to an induced transmembrane voltage U(m), the exact molecular mechanisms are not fully explained. In this study we analyze transient conductivity changes during the electric pulses and increased membrane permeability for ions and molecules after the pulses in order to determine which parameters affect stabilization of pores, and to analyze the relation between transient pores and long-lived transport pores. By quantifying ion diffusion, fraction of transport pores f(per) was obtained. A simple model, which assumes a quadratic dependence of f(per) on E in the area where U(m)>U(c) very accurately describes experimental values, suggesting that f(per) increases with higher electric field due to larger permeabilized area and due to higher energy available for pore formation. The fraction of transport pores increases also with the number of pulses N, which suggest that each pulse contributes to formation of more and/or larger stable transport pores, whereas the number of transient pores does not depend on N.  相似文献   

20.
Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号