首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard hydrogen bonds are of great importance for protein structure and function. Ionic hydrogen bonds often are significantly stronger than standard hydrogen bonds and exhibit unique properties, but their role in proteins is not well understood. We report that hydrogen/deuterium exchange causes a redshift in the visible absorbance spectrum of photoactive yellow protein (PYP). We expand the range of interpretable isotope effects by assigning this spectral isotope effect (SIE) to a functionally important hydrogen bond at the active site of PYP. The inverted sign and extent of this SIE is explained by the ionic nature and strength of this hydrogen bond. These results show the relevance of ionic hydrogen bonding for protein active sites, and reveal that the inverted SIE is a novel, to our knowledge, tool to probe ionic hydrogen bonds. Our results support a classification of hydrogen bonds that distinguishes the properties of ionic hydrogen bonds from those of both standard and low barrier hydrogen bonds, and show how this classification helps resolve a recent debate regarding active site hydrogen bonding in PYP.  相似文献   

2.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

3.
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α‐helices compared to β‐sheets by ~0.2 kcal/mol. [2] Charge‐stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ~2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies.  相似文献   

4.
Human male germ cell-associated kinase (hMAK) is an androgen-inducible gene in prostate epithelial cells, and it acts as a coactivator of androgen receptor signaling in prostate cancer. The 3D structure of the hMAK kinase was modeled based on the crystal structure of CDK2 kinase using comparative modeling methods, and the ATP-binding site was characterized. We have collected five inhibitors of hMAK from the literature and docked into the ATP-binding site of the kinase domain. Solvated interaction energies (SIE) of inhibitor binding are calculated from the molecular dynamics simulations trajectories of protein–inhibitor complexes. The contribution from each active site residue in hMAK toward inhibitor binding revealed the nature and extent of interactions between inhibitors and individual residues. The main chain atoms of Met79 invariably form hydrogen bonds with all five inhibitors. The amino acids Leu7, Val15, and Leu129 stabilize the inhibitors via CH–pi interactions. The Asp140 in the active site and Glu77 in hinge region show characteristic hydrogen bonding interactions with inhibitors. From SIE, the residue-wise interactions revealed the nature of non-bonding contacts and modifications required to increase the inhibitor activity. Our work provides 3D model structure of hMAK and molecular basis for the mechanisms of hMAK inhibition at atomic level that aid in designing new potent inhibitors.  相似文献   

5.
In order to clarify changes in the structure and surface properties of photoactive yellow protein (PYP) upon light absorption, the spectroscopic properties and solution structure of its photo-intermediate (PYP(M)) were examined in the presence of various anions. At identical ionic strengths, citrate slowed the decay rate of PYP(M) more than acetate. Although the absorption spectrum in the dark was not affected by organic anions, citrate induced a 5-nm blue shift of the absorption maximum for PYP(M). Solution X-ray scattering experiments indicated that the radius of gyration (Rg) and apparent molecular weight in the dark were constant in all buffer systems. However, the Rg of PYP(M) in citrate buffer at high concentration was 16.2 (+/-0.2) A, while the Rg of PYP(M) in acetate buffer was 15.6 (+/-0.2) A. The apparent molecular weight increased 7% upon PYP(M) formation in citrate buffer at high concentration compared to other conditions. These results suggest that citrate molecules specifically bind to PYP(M). A cluster of basic amino acid residues with a hydrogen bond donor would be exposed upon PYP(M) formation and responsible for the specific binding of citrate.  相似文献   

6.
Mutating arginine 52 to glutamine (R52Q) in photoactive yellow protein (PYP) increases the pK(a) of the chromophore by 1 pH unit. The structure of the R52Q PYP mutant was determined by X-ray crystallography and was compared to the structure of wild-type PYP to assess the role of R52 in pK(a) regulation. The essential differences between R52Q and the wild type were confined to the loop region containing the 52nd residue. While the hydrogen bonds involving the chromophore were unchanged by the mutation, removing the guanidino group generated a cavity near the chromophore; this cavity is occupied by two water molecules. In the wild type, R52 forms hydrogen bonds with T50 and Y98; these hydrogen bonds are lost in R52Q. Q52 is linked to Y98 by hydrogen bonding through the two water molecules. R52 acts as a lid on the chromophore binding pocket and controls the accessibility of the exterior solvent and the pK(a) of the chromophore. R52 is found to flip out during the formation of PYP(M). The result of this movement is quite similar to the altered structure of R52Q. Thus, we propose that conformational changes at R52 are partly responsible for pK(a) regulation during the photocycle.  相似文献   

7.
We have used a new approach to the dynamics of hydrolytic metalloenzyme catalysis based on investigations of both external solvent viscosity effects and kinetic 2H isotope effects. The former reflects solvent and protein dynamics, and the nuclear reorganization distribution among damped protein motion and intramolecular friction-free nuclear motion. The isotope effect represents proton tunnelling and reorganization in the hydrogen bond network around the active site. We illustrate the approach by new spectrophotometric and pH-titration data for carboxypeptidase-A-catalyzed benzoylglycyl-L-phenyllactate hydrolysis. This substrate exhibits both a significant inverse fractional power law viscosity dependence over wide ranges controlled by glycerol and sucrose, and a kinetic 2H isotope effect of 1.65. The analogous benzoylglycylphenylalanine hydrolysis has a smaller isotope effect (1.3) and no viscosity dependence. Viscosity variation has no effect on the CD spectra in the 180-240-nm range. In terms of stochastic chemical rate theory, the data correspond to an enzyme-peptide substrate complex with a 'tight' structure protected from the solvent. In comparison, the enzyme-ester substrate complex is 'softer', strongly coupled to the solvent, and the rate-determining step is accompanied by proton transfer or by substantial reorganization in the hydrogen bonds near the active site.  相似文献   

8.
Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pK(a) of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that the differences in the experimental NMR data and electronic absorption spectra for pKSI and tKSI, two homologous bacterial forms of the enzyme, are due predominantly to the third tyrosine that is present in the hydrogen bonding network of pKSI but not tKSI. These studies also provide experimentally testable predictions about the impact of mutating the distal tyrosine residues in this hydrogen bonding network on the NMR chemical shifts and electronic absorption spectra.  相似文献   

9.
In sequence-function investigations, approaches are needed for rapidly screening protein variants for possible changes in conformation. Recent NMR methods permit direct detection of hydrogen bonds through measurements of scalar couplings that traverse hydrogen bonds (trans-hydrogen bond couplings). We have applied this approach to screen a series of five single site mutants of the sweet protein brazzein with altered sweetness for possible changes in backbone hydrogen bonding with respect to wild-type. Long range, three-dimensional data correlating connectivities among backbone 1HN, 15N, and 13C' atoms were collected from the six brazzein proteins labeled uniformly with carbon-13 and nitrogen-15. In wild-type brazzein, this approach identified 17 backbone hydrogen bonds. In the mutants, altered magnitudes of the couplings identified hydrogen bonds that were strengthened or weakened; missing couplings identified hydrogen bonds that were broken, and new couplings indicated the presence of new hydrogen bonds. Within the series of brazzein mutants investigated, a pattern was observed between sweetness and the integrity of particular hydrogen bonds. All three "sweet" variants exhibited the same pattern of hydrogen bonds, whereas all three "non-sweet" variants lacked one hydrogen bond at the middle of the alpha-helix, where it is kinked, and one hydrogen bond in the middle of beta-strands II and III, where they are twisted. Two of the non-sweet variants lack the hydrogen bond connecting the N and C termini. These variants showed greater mobility in the N- and C-terminal regions than wild-type brazzein.  相似文献   

10.
While the lifetime of conventional receptor-ligand interactions is shortened by tensile mechanical force, some recently discovered interactions, termed catch bonds, can be strengthened by force. Motivated by the search for the underpinning structural mechanisms, we here explore the structural dynamics of the binding site of the bacterial adhesive protein FimH by molecular dynamics and steered molecular dynamics. While the crystal structure of only one FimH conformation has been reported so far, we describe two distinctively different conformations of the mannose-bound FimH binding site. Force-induced dissociation was slowed when the mannose ring rotated such that additional force-bearing hydrogen bonds formed with the base of the FimH binding pocket. The lifetime of the complex was further enhanced significantly by rigidifying this base. We finally show how even sub-angstrom spatial alterations of the hydrogen bonding pattern within the base can lead to significantly decreased bond lifetimes.  相似文献   

11.
Lipoxygenases are an important class of non-heme iron enzymes that catalyze the hydroperoxidation of unsaturated fatty acids. The details of the enzymatic mechanism of lipoxygenases are still not well understood. This study utilizes a combination of kinetic and structural probes to relate the lipoxygenase mechanism of action with structural modifications of the iron's second coordination sphere. The second coordination sphere consists of Gln(495) and Gln(697), which form a hydrogen bond network between the substrate cavity and the first coordination sphere (Asn(694)). In this investigation, we compared the kinetic and structural properties of four mutants (Q495E, Q495A, Q697N, and Q697E) with those of wild-type soybean lipoxygenase-1 and determined that changes in the second coordination sphere affected the enzymatic activity by hydrogen bond rearrangement and substrate positioning through interaction with Gln(495). The nature of the C-H bond cleavage event remained unchanged, which demonstrates that the mutations have not affected the mechanism of hydrogen atom tunneling. The unusual and dramatic inverse solvent isotope effect (SIE) observed for the Q697E mutant indicated that an Fe(III)-OH(-) is the active site base. A new transition state model for hydrogen atom abstraction is proposed.  相似文献   

12.
Bott RR  Chan G  Domingo B  Ganshaw G  Hsia CY  Knapp M  Murray CJ 《Biochemistry》2003,42(36):10545-10553
The properties of the transition state for serine protease-catalyzed hydrolysis of an amide bond were determined for a series of subtilisin variants from Bacillus lentus. There is no significant change in the structure of the enzyme upon introduction of charged mutations S156E/S166D, suggesting that changes in catalytic activity reflect global properties of the enzyme. The effect of charged mutations on the pK(a) of the active site histidine-64 N(epsilon)(2)-H was correlated with changes in the second-order rate constant k(cat)/K(m) for hydrolysis of tetrapeptide anilides at low ionic strength with a Br?nsted slope alpha = 1.1. The solvent isotope effect (D)2(O)(k(cat)/K(m))(1) = 1.4 +/- 0.2. These results are consistent with a rate-limiting breakdown of the tetrahedral intermediate in the acylation step with hydrogen bond stabilization of the departing amine leaving group. There is an increase in the ratio of hydrolysis of succinyl-Ala-Ala-Pro-Phe-anilides for p-nitroaniline versus aniline leaving groups with variants with more basic active site histidines that can be described by the interaction coefficient p(xy) = delta beta(lg)/delta pK(a) (H64) = 0.15. This is attributed to increased hydrogen bonding of the active site imidazolium N-H to the more basic amine leaving group as well as electrostatic destabilization of the transition state. A qualitative characterization of the transition state is presented in terms of a reaction coordinate diagram that is defined by the structure-reactivity parameters.  相似文献   

13.
A continuous chain of hydrogen bonded groups, which forms cross-hands interaction between domains in molecules of pepsin-like enzymes, has been revealed. The chain contains a pair of 6 symmetrically related hydrogen bonds between main chain atoms and the two conserved water molecules. The peptide groups forming hydrogen bond with the inner oxygens of the active carboxyls are important elements of the chain. The so-called "fireman grip" hydrogen bonding, consisting of a pair of the two symmetrically related bonds, is an integral part of this system of interactions. One of the water molecules in this system has a zero accessibility and forms a very short hydrogen bond with the active site interacting peptide group. This chain connects tightly the two regions of domains which have a high correlation in conformational mobility. The retroviral enzymes have an abortive chain of the interdomain interaction in this region which is reduced to the "fireman grip" net.  相似文献   

14.
The pokeweed antiviral protein (PAP) belongs to a family of ribosome-inactivating proteins (RIP), which depurinate ribosomal RNA through their site-specific N-glycosidase activity. We report low temperature, three-dimensional structures of PAP co-crystallized with adenyl-guanosine (ApG) and adenyl-cytosine-cytosine (ApCpC). Crystal structures of 2.0-2.1 A resolution revealed that both ApG or ApCpC nucleotides are cleaved by PAP, leaving only the adenine base clearly visible in the active site pocket of PAP. ApCpC does not resemble any known natural substrate for any ribosome-inactivating proteins and its cleavage by PAP provides unprecedented evidence for a broad spectrum N-glycosidase activity of PAP toward adenine-containing single stranded RNA. We also report the analysis of a 2.1 A crystal structure of PAP complexed with the RIP inhibitor pteoric acid. The pterin ring is strongly bound in the active site, forming four hydrogen bonds with active site residues and one hydrogen bond with the coordinated water molecule. The second 180 degrees rotation conformation of pterin ring can form only three hydrogen bonds in the active site and is less energetically favorable. The benzoate moiety is parallel to the protein surface of PAP and forms only one hydrogen bond with the guanido group of Arg135.  相似文献   

15.
Although the activation of low-molecular weight protein tyrosine phosphatases by certain purines and purine derivatives was first described three decades ago, the mechanism of this rate enhancement was unknown. As an example, adenine activates the yeast low-molecular weight protein tyrosine phosphatase LTP1 more than 30-fold. To examine the structural and mechanistic basis of this phenomenon, we have determined the crystal structure of yeast LTP1 complexed with adenine. In the crystal structure, an adenine molecule is found bound in the active site cavity, sandwiched between the side chains of two large hydrophobic residues at the active site. Hydrogen bonding to the side chains of other active site residues, as well as some water-mediated hydrogen bonds, also helps to fix the position of the bound adenine molecule. An ordered water was found in proximity to the bound phosphate ion present in the active site, held by hydrogen bonding to N3 of adenine and Odelta1 of Asp-132. On the basis of the crystal structure, we propose that this water molecule is the nucleophile that participates in the dephosphorylation of the phosphoenzyme intermediate. Solvent isotope effect studies show that there is no rate-determining transfer of a solvent-derived proton in the transition state for the dephosphorylation of the phosphoenzyme intermediate. Such an absence of general base catalysis of water attack is consistent with the stability of the leaving group, namely, the thiolate anion of Cys-13. Consequently, adenine activates the enzyme by binding and orienting a water nucleophile in proximity to the phosphoryl group of the phosphoenzyme intermediate, thus increasing the rate of the dephosphorylation step, a step that is normally the rate-limiting step of this enzymatic reaction.  相似文献   

16.
Photoactive yellow protein (PYP) is a bacterial blue light receptor containing a 4-hydroxycinnamyl chromophore, and its absorption maximum is 446 nm. In a dark state, the hydroxyl group of the chromophore is deprotonated and forms hydrogen bonds with Tyr42 and Glu46. Either removal of a hydrogen bond with Tyr42 or addition of chaotropes such as thiocyanate produces a blue-shifted species called an intermediate wavelength form, in which absorption maximum ranges from 355 to 400 nm. To examine the structural origin of the intermediate wavelength form, we have performed resonance Raman investigations of wild-type PYP and some mutants (Tyr42 --> Ala, Tyr42 --> Phe, Glu46 --> Gln, and Thr50 --> Val) in the presence or absence of potassium thiocyanate. These studies show that the chromophore of the intermediate wavelength form is protonated, implying an increase in a pK(a) of the chromophore. Hence, the removal of the hydrogen bond between Tyr42 and chromophore or partial protein denaturation in the presence of thiocyanate results in a spectral blue-shift. Quantum chemical calculations based on density functional theory further support the idea that the pK(a) of the chromophore is increased by removing a hydrogen bond or by increasing the dielectric constant in the vicinity of the chromophore.  相似文献   

17.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

18.
Radmer RJ  Klein TE 《Biochemistry》2004,43(18):5314-5323
We show that there are correlations between the severities of osteogenesis imperfecta (OI) phenotypes and changes in the residues near the mutation site. Our results show the correlations between the severity of various forms of the inherited disease OI and alteration of residues near the site of OI causing mutations. Among our many observed correlations are particularly striking ones between the presence of nearby proline residues and lethal mutations, and the presence of nearby alanines residues and nonlethal mutations. We investigated the possibility that these correlations have a structural basis using molecular dynamics simulations of collagen-like molecules designed to mimic the site of a lethal OI mutation in collagen type I. Our significant finding is that interchain hydrogen bonding is greatly affected by variations in residue type. We found that the strength of hydrogen bond networks between backbone atoms on different chains depends on the local residue sequence and is weaker in proline-rich regions of the molecule. We also found that an alanine at a site near an OI mutation causes less structural disruption than a proline, and that residue side chains also form interchain hydrogen bonds with frequencies that are dependent on residue type. For example, arginine side chains form strong hydrogen bonds with the backbone of the subsequent peptide chain, while lysine and glutamine less frequently form similar hydrogen bonds. This decrease in the observed hydrogen bond frequency correlates with a decrease in the experimentally determined thermal stability. We contrasted general structural properties of model collagen peptides with and without the mutation to examine the effect of the single-point mutation on the surrounding residues.  相似文献   

19.
The catalytic mechanism of aspartic proteinases   总被引:3,自引:0,他引:3  
L H Pearl 《FEBS letters》1987,214(1):8-12
The highly symmetric active site of an aspartic proteinase, endothiapepsin, binds a water molecule ideally situated for nucleophilic attack on a substrate peptide bond whose distortion from planarity is stabilised by interactions of the substrate with the extended binding cleft. The apparent electrophilicity of the catalysis results from this distortion. The scissile peptide bond is orientated with the carbonyl oxygen hydrogen bonding to the tip of the beta-hairpin 'flap' which lies over the cleft. Nucleophilic attack by the bound water leads to a tetrahedral intermediate similar to observed complexes with hydroxyl inhibitors and stabilised by hydrogen bonds with the flap.  相似文献   

20.
Through the development of a procedure to measure when hydrogen bonds form under two-state folding conditions, alpha-helices have been determined to form proportionally to denaturant-sensitive surface area buried in the transition state. Previous experiments assessing H/D isotope effects are applied to various model proteins, including lambda and Arc repressor variants, a coiled coil domain, cytochrome c, colicin immunity protein 7, proteins L and G, acylphosphatase, chymotrypsin inhibitor II and a Src SH3 domain. The change in free energy accompanied by backbone deuteration is highly correlated to secondary structure composition when hydrogen bonds are divided into two classes. The number of helical hydrogen bonds correlates with an average equilibrium isotope effect of 8.6 +/- 0.9 cal x mol(-1) x site(-1). However, beta-sheet and long-range hydrogen bonds have little isotope effect. The kinetic isotope effects support our hypothesis that, for helical proteins, hydrophobic association cannot be separated from helix formation in the transition state. Therefore, folding models that describe an incremental build-up of structure in which hydrophobic burial and hydrogen bond formation occur commensurately are more consistent with the data than are models that posit the extensive formation of one quantity before the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号