首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation of the Caenorhabditis elegans gene unc-89 results in disorganization of muscle A-bands. unc-89 encodes a giant polypeptide (900 kDa) containing a DH domain followed by a PH domain at its N terminus, which is characteristic of guanine nucleotide exchange factor proteins for Rho GTPases. To obtain evidence that the DH-PH region has activity toward specific Rho family small GTPases, we conducted an experiment using the yeast three-hybrid system. The DH-PH region of UNC-89 has exchange activity for RHO-1 (C. elegans RhoA), but not for CED-10 (C. elegans Rac), MIG-2 (C. elegans RhoG), or CDC-42 (C. elegans Cdc42). The DH domain alone has similar activity for RHO-1. An in vitro binding assay demonstrates interaction between the DH-PH region of UNC-89 and each of the C. elegans Rho GTPases. Partial knockdown of rho-1 in C. elegans adults showed a pattern of disorganization of myosin thick filaments similar to the phenotype caused by unc-89 (su75), a mutant allele in which all of the isoforms containing the DH-PH region are missing. Taken together, we propose a model in which the DH-PH region of UNC-89 activates RHO-1 GTPase for organization of myosin filaments in C. elegans muscle cells.  相似文献   

2.
Richard A. Kahn 《FEBS letters》2009,583(23):3872-3305
In this review, I summarize the likely roles played by ADP-ribosylation factor (Arf) proteins in the regulation of membrane traffic at the Golgi, from the perspective of the GTPase. The most glaring limitations to the development of a coherent molecular model are highlighted; including incomplete information on the initiation of Arf activation, identification of the “accessory proteins” required for carrier maturation and scission, and those required for directed traffic and fusion at the destination membrane. Though incomplete, the molecular model of carrier biogenesis has developed rapidly in recent years and promises richness in understanding this essential process.  相似文献   

3.
Sec2 is a reversibly membrane associated multi-domain protein with guanine nucleotide exchange activity towards the yeast Rab-protein Sec4. Both proteins are localized to secretory vesicles destined for exocytosis. We have used transient kinetic methods to show that Sec2 is a highly active exchange factor, in contrast to other proteins previously characterized as Rab exchange factors. With a K(d) value for the Sec2:Sec4.GDP interaction of ca 70 microM and a maximal rate of GDP displacement of ca 15 s(-1), it is 100-1000-fold more effective than other proteins showing exchange activity towards Rabs (MSS4, DSS4, Vps9) and ca tenfold faster than Cdc25 as a Ras specific exchanger, although still 100-fold slower than the fastest systems studied so far, EF-Tu/Ef-Ts and Ran/RCC1. A comparison with other proteins showing Rab exchange activity shows that maximal rates of GDP dissociation catalyzed by Sec2 are orders of magnitude faster. When comparing Sec2 with DSS4, which also acts on Sec4, the difference was particularly dramatic. Another difference is seen in the kinetics of association of GTP with the Sec4:Sec2 complex, a process which is extremely slow for DSS4/MSS4 complexes with cognate Rabs but in the range observed for other GTPase:exchanger complexes for Sec4:Sec2., It is suggested that systems such as Ef-Tu/Ef-Ts and Ran/RCC1 have evolved for maximal possible activity for the interaction between two soluble proteins, whereas other evolutionary constraints which are connected to the spatial and temporal coordination of events in vesicular transport and other regulatory networks have determined the detailed kinetic properties of the other systems.  相似文献   

4.
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.  相似文献   

5.
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.  相似文献   

6.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

7.
To examine the in vivo functions of protein kinase N (PKN), one of the effectors of Rho small guanosine triphosphatases (GTPases), we used the nematode Caenorhabditis elegans as a genetic model system. We identified a C. elegans homologue (pkn-1) of mammalian PKN and confirmed direct binding to C. elegans Rho small GTPases. Using a green fluorescent protein reporter, we showed that pkn-1 is mainly expressed in various muscles and is localized at dense bodies and M lines. Overexpression of the PKN-1 kinase domain and loss-of-function mutations by genomic deletion of pkn-1 resulted in a loopy Unc phenotype, which has been reported in many mutants of neuronal genes. The results of mosaic analysis and body wall muscle-specific expression of the PKN-1 kinase domain suggests that this loopy phenotype is due to the expression of PKN-1 in body wall muscle. The genomic deletion of pkn-1 also showed a defect in force transmission. These results suggest that PKN-1 functions as a regulator of muscle contraction-relaxation and as a component of the force transmission mechanism.  相似文献   

8.
Formation of coated carrier vesicles, such as COPI-coated vesicles from the cis -Golgi, is triggered by membrane binding of the GTP-bound form of ADP-ribosylation factors. This process is blocked by brefeldin A, which is an inhibitor of guanine nucleotide exchange factors for ADP-ribosylation factor. GBF1 is one of the guanine nucleotide-exchange factors for ADP-ribosylation factor and is localized in the Golgi region. In the present study, we have determined the detailed subcellular localization of GBF1. Immunofluorescence microscopy of cells treated with nocodazole or incubated at 15 °C has suggested that GBF1 behaves similarly to proteins recycling between the cis -Golgi and the endoplasmic reticulum. Immunoelectron microscopy has revealed that GBF1 localizes primarily to vesicular and tubular structures apposed to the cis -face of Golgi stacks and minor fractions to the Golgi stacks. GBF1 overexpressed in cells causes recruitment of class I and class II ADP-ribosylation factors onto Golgi membranes. Furthermore, overexpressed GBF1 antagonizes various effects of brefeldin A, such as inhibition of membrane recruitment of ADP-ribosylation factors and the COPI coat, and redistribution of Golgi-resident and itinerant proteins. These observations indicate that GBF1 is involved in the formation of COPI-coated vesicles from the cis -Golgi or the pre-Golgi intermediate compartment through activating ADP-ribosylation factors.  相似文献   

9.
DBC2 is a tumor suppressor gene linked to breast and lung cancers. Although DBC2 belongs to the RHO GTPase family, it has a unique structure that contains a Broad-Complex/Tramtrack/Bric a Brac (BTB) domain at the C terminus instead of a typical CAAX motif. A limited number of functional studies on DBC2 have indicated its participation in diverse cellular activities, such as ubiquitination, cell-cycle control, cytoskeleton organization and protein transport. In this study, the role of DBC2 in protein transport was analyzed using vesicular stomatitis virus glycoprotein (VSVG) fused with green fluorescent protein. We discovered that DBC2 knockdown hinders the VSVG transport system in 293 cells. Previous studies have demonstrated that VSVG is transported via the microtubule motor complex. We demonstrate that DBC2 mobility depends also on an intact microtubule network. We conclude that DBC2 plays an essential role in microtubule-mediated VSVG transport from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

10.
RIN proteins serve as guanine nucleotide exchange factors for Rab5a. They are characterized by the presence of a RIN homology domain and a C-terminal Vps9 domain. Currently three family members have been described and analyzed. Here we report the identification of a novel RIN family member, Rin-like (Rinl), that represents a new interaction partner of the receptor tyrosine kinase MuSK, which is an essential key regulator of neuromuscular synapse development. Rinl is localized to neuromuscular synapses but shows the highest expression in thymus and spleen. Rinl preferentially binds to nucleotide-free Rab5a and catalyzes the exchange of GDP for GTP. Moreover, Rinl also binds GDP-bound Rab22 and increases the GDP/GTP exchange implicating Rinl in endocytotic processes regulated by Rab5a and Rab22. Interestingly, Rinl shows a higher catalytic rate for Rab22 compared to Rab5a. Rinl is closely associated with the cytoskeleton and thus contributes to the spatial control of Rab5a and Rab22 signaling at actin-positive compartments. Most importantly, overexpression of Rinl affects fluid-phase as well as EGFR endocytosis.  相似文献   

11.
Victor W. Hsu  Jia-Shu Yang 《FEBS letters》2009,583(23):3758-19041
Coat Protein I (COPI) is one of the most intensely investigated coat complexes. Numerous studies have contributed to a general understanding of how coat proteins act to initiate intracellular vesicular transport. This review highlights key recent findings that have shaped our current understanding of how COPI vesicles are formed.  相似文献   

12.
The FeoB family of membrane embedded G proteins are involved with high affinity Fe(II) uptake in prokaryotes. Here, we report that FeoB harbors a novel GDP dissociation inhibitor-like domain that specifically stabilizes GDP-binding through an interaction with the switch I region of the G protein. We show that the stabilization of GDP binding is conserved between species despite a high degree of sequence variability in their guanine nucleotide dissociation inhibitor (GDI)-like domains, and demonstrate that the presence of the membrane embedded domain increases GDP-binding affinity roughly 150-fold over the level accomplished by action of the GDI-like domain alone. To our knowledge, this is the first example for a prokaryotic GDI, targeting a bacterial G protein-coupled membrane process. Our findings suggest that Fe(II) uptake in bacteria involves a G protein regulatory pathway reminiscent of signaling mechanisms found in higher-order organisms.  相似文献   

13.
Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of βPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of βPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that βPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.  相似文献   

14.
ß1-adrenergic receptors (ß1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the ß1-AR (S312A) is internalized but does not recycle. We determined that WT ß1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by > 70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT ß1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT ß1-AR were colocalized by > 70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT ß1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the ß1-AR. Next, we determined the effect of each of the rab11-interacting proteins on trafficking of the WT ß1-AR. The recycling of the ß1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role in recycling of the human ß1-AR.  相似文献   

15.
The Drosophila sponge (spg)/CG31048 gene belongs to the dedicator of cytokinesis (DOCK) family genes that are conserved in a wide variety of species. DOCK family members are known as DOCK1–DOCK11 in mammals. Although DOCK1 and DOCK2 involve neurite elongation and immunocyte differentiation, respectively, the functions of other DOCK family members are not fully understood. Spg is a Drosophila homolog of mammalian DOCK3 and DOCK4. Specific knockdown of spg by the GMR-GAL4 driver in eye imaginal discs induced abnormal eye morphology in adults. To mark the photoreceptor cells in eye imaginal discs, we used a set of enhancer trap strains that express lacZ in various sets of photoreceptor cells. Immunostaining with anti-Spg antibodies and anti-lacZ antibodies revealed that Spg is localized mainly in R7 photoreceptor cells. Knockdown of spg by the GMR-GAL4 driver reduced signals of R7 photoreceptor cells, suggesting involvement of Spg in R7 cell differentiation. Furthermore, immunostaining with anti-dpERK antibodies showed the level of activated ERK signal was reduced extensively by knockdown of spg in eye discs, and both the defects in eye morphology and dpERK signals were rescued by over-expression of the Drosophila raf gene, a component of the ERK signaling pathway. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rap1 in and around the plasma membrane of the eye disc cells. Together, these results indicate Spg positively regulates the ERK pathway that is required for R7 photoreceptor cell differentiation and the regulation is mediated by interaction with Rap1 during development of the compound eye.  相似文献   

16.
The phosphatase and tensin homolog (PTEN) gene is a tumor suppressor frequently deleted or mutated in sporadic tumors of the breast, prostate, endometrium and brain. The protein acts as a dual specificity phosphatase for lipids and proteins. PTEN loss confers a growth advantage to cells, protects from apoptosis and favors cell migration. The deleted in liver cancer 1 (DLC1) gene has emerged as a novel tumor suppressor downregulated in a variety of tumor types including those of the breast. DLC1 contains a Rho GTPase activating domain that is involved in the inhibition of cell proliferation, migration and invasion. To investigate how simultaneous loss of PTEN and DLC1 contributes to cell transformation, we downregulated both proteins by RNA interference in the non-invasive MCF7 breast carcinoma cell line. Joint depletion of PTEN and DLC1 resulted in enhanced cell migration in wounding and chemotactic transwell assays. Interestingly, both proteins were found to colocalize at the plasma membrane and interacted physically in biochemical pulldowns and coimmunoprecipitations. We therefore postulate that the concerted local inactivation of signaling pathways downstream of PTEN and DLC1, respectively, is required for the tight control of cell migration.  相似文献   

17.
Hepatitis C virus (HCV) morphogenesis and release are closely linked to lipid metabolism. It has been described recently by our group that TIP47 plays an essential role for the targeting of the NS5A-complexed RNA genome from the replicon complex to the lipid droplet. Moreover, apolipoprotein (apo) E was found to be associated with the viral particle. In light of the fact, that TIP47 harbors an apoE like domain and has a high affinity to lipoproteins, the interaction of TIP47 with the viral particle and the potential relevance for the release of the viral particle were investigated. Coimmunoprecipitations and electron microscopy analysis using immunogold labeling revealed that TIP47 binds to the viral particle and stays associated with the released HCV particle. Silencing of the TIP47 binding partner Rab9 by lentiviral transduction abolishes the viral replication. However, destruction of TIP47-Rab9 interactions by deletion/mutation of the Rab9 binding does not abolish the genome replication domain but prevents the release of HCV particles. The binding of these TIP47 mutants to the viral particle is not affected by destruction of the Rab9 binding domain. Moreover, we found that these TIP47 mutants lacking the binding site for Rab9 misdirect the de novo synthesized viral particles to the autophagosomal/lysosomal compartment where the particles are degraded. From this we conclude that the Rab9-complexed TIP47 plays an essential role for the proper release of hepatitis C viral particles.  相似文献   

18.
HERC1 is a giant multidomain protein involved in membrane trafficking through its interaction with vesicle coat proteins such as clathrin and ARF. Previously, it has been shown that the RCC1-like domain 1 (RLD1) of HERC1 stimulates guanine nucleotide dissociation on ARF1 and Rab proteins. In this study, we have analyzed whether HERC1 may also regulate ARF6 activity. We show that HERC1, through its RLD1, stimulates GDP release from ARF6 but, unexpectedly, it inhibits GDP/GTP exchange on ARF6 under conditions where ARNO stimulates it. Furthermore, we demonstrate that the activity of HERC1 as a guanine nucleotide release factor requires the presence of PI(4,5)P(2) bound to HERC1's RLD1. In agreement with this, we find that purified HERC1 contains PI(4,5)P(2) bound to the RLD1.  相似文献   

19.
Elmo is an evolutionarily conserved mammalian ortholog of Caenorhabditis elegans CED-12 with proposed roles during the removal of apoptotic cells, cell migration, neurite outgrowth, and myoblast fusion (Katoh and Negishi (2003) [1], Park and Tosello (2007) [2], Grimsley et al. (2004) [3], Hamoud et al. (2014) [4]). Elmo mediates these cellular processes by interacting with various proteins located in the plasma membrane, cytoplasm and nucleus, and by modulating their activities although it has no intrinsic catalytic activity (Park and Tosello (2007) [2], Hamoud et al. (2014) [4], Li et al. (2013) [5], Margaron, Fradet and Cote (2013) [6], and Mauldin et al. (2013)[7]). Because there are a limited number of proteins known to interact with Elmo, we performed a yeast two-hybrid screen using Elmo1 as bait to identify Elmo1-interacting proteins and to evaluate their mode of regulation. Arhgef16 was one of the proteins identified through the screen and subsequent analyses revealed that Arhgef16 interacted with Elmo1 in mammalian cells as well. Expression of Arhgef16 in phagocytes promoted engulfment of apoptotic cells, and engulfment mediated by Arhgef16 increased synergistically in the presence of Elmo1 but was abrogated in the absence of Elmo1. In addition, Arhgef16-mediated removal of apoptotic cells was dependent on RhoG, but independent of Dock1. Taken together, this study suggests that the newly identified Elmo1-interacting protein, Arhgef16, functions synergistically with Elmo1 to promote clearance of apoptotic cells in a RhoG-dependent and Dock1-independent manner.  相似文献   

20.
The small GTPases Arf1 and Arf6 have nonoverlapping functions in cellular traffic despite their very high sequence and structural resemblance. Notably, the exquisite isoform specificity of their guanine nucleotide exchange factors and their distinctive sensitivity to the drug brefeldin A cannot be explained by any straightforward structural model. Here we integrated structural and spectroscopic methods to address this issue using Δ13Arf6-GDP, a truncated mutant that mimics membrane-bound Arf6-GDP. The crystal structure of Δ13Arf6-GDP reveals an unprecedented unfolding of the GTPase core β-strands, which is fully accounted for by small-angle X-ray scattering data in solution and by ab initio three-dimensional envelope calculation. NMR chemical shifts identify this structural disorder in Δ13Arf6-GDP, but not in the closely related Δ17Arf1-GDP, which is consistent with their comparative thermodynamic and hydrodynamic analyses. Taken together, these experiments suggest an unfolding model for the nucleotide switch of Arf6 and shed new light on its biochemical differences with Arf1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号