首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.  相似文献   

2.
Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.  相似文献   

3.
The temporal expression of elastogenesis is unique among connective tissues in that elastin production occurs primarily during late fetal and early neonatal periods and is essentially fully repressed once fiber assembly is completed. To test whether elastin synthesis in adult nuchal ligament fibroblasts is permanently repressed or whether the cells retain the ability to reinitiate production upon proper stimulation, we examined in adult ligament cells various parameters known to be involved in the regulation of elastin production. Elastin synthetic capacity, as determined by the levels of steady-state tropoelastin mRNA, of adult tissue was significantly decreased relative to fetal tissue. Likewise, fibroblasts grown from explants of adult ligament had about a fourfold decrease in elastin production and elastin-specific mRNA levels. On the other hand, adult cells were similar to fetal ligament cells in that they were sensitive to glucocorticoid stimulation and demonstrated chemotactic responsiveness to elastin peptides. Since our previous studies have shown that the extracellular matrix (ECM) plays an important role in influencing elastin phenotypic expression, fetal and adult fibroblasts were grown on slices of nonviable adult ligament to test if repression of elastin production was directed by factors in ECM of adult tissues. No change in elastin synthesis was detected with either cell type grown on adult ligament, whereas both fetal and adult cells demonstrated increased elastin production in response to contact with fetal ligament. These results suggest that adult ligament ECM does not provide a metabolic signal to shut off the elastin gene and that adult cells remain responsive to external stimuli that may reinitiate high levels of elastin synthesis.  相似文献   

4.
BackgroundMid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process.Conclusions/SignificanceOur data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts'' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.  相似文献   

5.
Lateral transmission of force from myofibers laterally to the surrounding extracellular matrix (ECM) via the transmembrane proteins between them is impaired in old muscles. Changes in geometrical and mechanical properties of ECM of skeletal muscle do not fully explain the impaired lateral transmission with aging. The objective of this study was to determine the role of transmembrane proteins on force transmission in skeletal muscle. In this study, a 2D finite element model of single muscle fiber composed of myofiber, ECM, and the transmembrane proteins between them was developed to determine how changes in spatial density and mechanical properties of transmembrane proteins affect the force transmission in skeletal muscle. We found that force transmission and stress distribution are not affected by mechanical stiffness of the transmembrane proteins due to its non-linear stress–strain relationship. Results also showed that the muscle fiber with insufficient transmembrane proteins near the end of muscle fiber transmitted less force than that with more proteins does. Higher stress was observed in myofiber, ECM, and proteins in the muscle fiber with fewer proteins.  相似文献   

6.
The collagenous extracellular matrix (ECM) forms a stress-tolerant network that is essential for proper function of the vertebrate heart. Profound changes have been detected in the interstitial ECM concurrent with developmental and disease processes of the heart. These alterations in either the organization or accumulation of ECM components markedly affect myocardial function. Studies have shown that a number of biochemical factors, including angiotensin II, transforming growth factor-β, and insulin-like growth factors, modulate collagen expression by heart fibroblasts, however, few studies have examined the differential effects of these factors on fibroblasts from animals of different physiological backgrounds. The present studies were carried out to determine whether cardiac fibroblasts isolated from different aged animals (fetal, neonatal, and adult) have diverse responses to insulin-like growth factor-1 (IGF-1). Fibroblasts isolated from fetal, neonatal, and adult rat hearts were treated with IGF-1, and several downstream responses were measured, including collagen gel contraction, adhesion to ECM, and expression of interstitial collagen and integrins. IGF-1 affected these parameters to different degrees, depending on the age of the animal from which the fibroblasts were isolated. These experiments indicate that IGF-1 is a potent modulator of fibroblast behavior in general; however, significant differences are apparent in the responsiveness of cells to this growth factor depending on the age of the animal of origin. Future experiments will be directed at determining how the in vivo chemical and biomechanical environment affects the response of heart fibroblasts to growth factors such as IGF-1.  相似文献   

7.
Bone marrow mesenchymal stem cells (MSCs) may be a novel treatment modality for organ ischemia, possibly through the release of beneficial paracrine factors. However, an age threshold likely exists as to when MSCs gain their beneficial protective properties. We hypothesized that 1) VEGF would be a crucial stem cell paracrine mediator in providing postischemic myocardial protection and 2) small-interfering (si)RNA ablation of VEGF in adult MSCs (aMSCs) would equalize the differences observed between aMSC- and neonatal stem cell (nMSC)-mediated cardioprotection. Female adult Sprague-Dawley rat hearts were subjected to ischemia-reperfusion injury via Langendorff-isolated heart preparation (15 min equilibration, 25 min ischemia, and 60 min reperfusion). MSCs were harvested from adult and 2.5-wk-old neonatal mice and cultured under normal conditions. VEGF was knocked down in both cell lines by VEGF siRNA. Immediately before ischemia, one million aMSCs or nMSCs with or without VEGF knockdown were infused into the coronary circulation. The cardiac functional parameters were recorded. VEGF in cell supernatants was measured via ELISA. aMSCs produced significantly more VEGF than nMSCs and were noted to increase postischemic myocardial recovery compared with nMSCs. The knockdown of VEGF significantly decreased VEGF production in both cell lines, and the pretreatment of these cells impaired stem cell-mediated myocardial function. The knockdown of VEGF in adult stem cells equalized the myocardial functional differences observed between adult and neonatal stem cells. Therefore, VEGF is a critical paracrine mediator in facilitating postischemic myocardial recovery and likely plays a role in mediating the observed age threshold during stem cell therapy.  相似文献   

8.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   

9.
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1–10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.  相似文献   

10.
The goal of this study was to determine how alterations in protein composition of the extracellular matrix (ECM) affect its functional properties. To achieve this, we investigated the changes in the mechanical and failure properties of ECM sheets generated by neonatal rat aortic smooth muscle cells engineered to contain varying amounts of collagen and elastin. Samples underwent static and dynamic mechanical measurements before, during, and after 30 min of elastase digestion followed by a failure test. Microscopic imaging was used to measure thickness at two strain levels to estimate the true stress and moduli in the ECM sheets. We found that adding collagen to the ECM increased the stiffness. However, further increasing collagen content altered matrix organization with a subsequent decrease in the failure strain. We also introduced collagen-related percolation in a nonlinear elastic network model to interpret these results. Additionally, linear elastic moduli correlated with failure stress which may allow the in vivo estimation of the stress tolerance of ECM. We conclude that, in engineered replacement tissues, there is a tradeoff between improved mechanical properties and decreased extensibility, which can impact their effectiveness and how well they match the mechanical properties of native tissue.  相似文献   

11.
Cells generate mechanical stresses via the action of myosin motors on the actin cytoskeleton. Although the molecular origin of force generation is well understood, we currently lack an understanding of the regulation of force transmission at cellular length scales. Here, using 3T3 fibroblasts, we experimentally decouple the effects of substrate stiffness, focal adhesion density, and cell morphology to show that the total amount of work a cell does against the substrate to which it is adhered is regulated by the cell spread area alone. Surprisingly, the number of focal adhesions and the substrate stiffness have little effect on regulating the work done on the substrate by the cell. For a given spread area, the local curvature along the cell edge regulates the distribution and magnitude of traction stresses to maintain a constant strain energy. A physical model of the adherent cell as a contractile gel under a uniform boundary tension and mechanically coupled to an elastic substrate quantitatively captures the spatial distribution and magnitude of traction stresses. With a single choice of parameters, this model accurately predicts the cell’s mechanical output over a wide range of cell geometries.  相似文献   

12.
Cells generate mechanical stresses via the action of myosin motors on the actin cytoskeleton. Although the molecular origin of force generation is well understood, we currently lack an understanding of the regulation of force transmission at cellular length scales. Here, using 3T3 fibroblasts, we experimentally decouple the effects of substrate stiffness, focal adhesion density, and cell morphology to show that the total amount of work a cell does against the substrate to which it is adhered is regulated by the cell spread area alone. Surprisingly, the number of focal adhesions and the substrate stiffness have little effect on regulating the work done on the substrate by the cell. For a given spread area, the local curvature along the cell edge regulates the distribution and magnitude of traction stresses to maintain a constant strain energy. A physical model of the adherent cell as a contractile gel under a uniform boundary tension and mechanically coupled to an elastic substrate quantitatively captures the spatial distribution and magnitude of traction stresses. With a single choice of parameters, this model accurately predicts the cell’s mechanical output over a wide range of cell geometries.  相似文献   

13.
It is clear from the literature that considerable postnatal development occurs in the contractile properties of skeletal and cardiac muscle. Nevertheless, few studies have focused on developmental changes in airway smooth muscle or on the functional capabilities of airway innervation in the newborn. Conclusions about force generation, based on measurements of pulmonary mechanics during stimulation of the vagus nerves, suggest that the newborn possesses a reduced capability to narrow airway diameter relative to the adult. This reduced in vivo response is accompanied by a reduction in maximal force generating capabilities when compared on the basis of force per unit tissue cross-sectional area (stress) in vitro. However, studies of porcine airways suggest that such a finding may simply reflect a reduction in the relative amount of contractile protein (myosin heavy chain) as seen in fetal or preterm smooth muscle. Thus, comparisons based on force normalized per cross-sectional area of myosin alter conclusions from one in which fetal tracheal smooth muscle generates less maximal force than the adult, to one in which the fetal trachea has greater contractile capabilities. Interestingly, comparisons of maximal isometric force in bronchial smooth muscle between different age groups remain unaffected when myosin heavy chain normalization is applied. Finally, there appears to be an age at which maximal force is significantly greater than at any other age, independent of the amount of smooth muscle (determined morphologically), smooth muscle myosin content, or myosin isoform. Whether this enhanced in vitro response is reflected in vivo, or is counteracted by other physiological mechanisms, remains to be seen.  相似文献   

14.
新近研究表叽细胞外基质(extracellularmatrix,ECM)的物理性质,特别是硬度或弹性,能对细胞的黏附、铺展、迁移、增殖、分化和凋亡等多种功能和行为产生重要影响。间充质干细胞(mesenchymalstemcells,MSCs)是组织工程和细胞治疗的理想种子细胞。ECM硬度可诱导MSCs向脂肪、软骨、神经、肌肉和骨等方向分化。该文综合论述了ECM硬度对干细胞分化的影响,涵盖了构建ECM硬度的测量、调控与表征等,不同培养条件下干细胞对硬度的响应和分化以及硬度和其他因素的联合作用;在此基础上,进一步论述了干细胞分化过程中细胞感应ECM硬度并转化为生物学信号的机制和信号通路。该文还总结了在ECM硬度调控干细胞分化行为领域最新的研究进展情况,较为系统地分析了材料学、细胞生物学、分子生物学水平的主要影响因素,并对本领域未来需要重点研究的问题进行了展望。  相似文献   

15.
16.
Cellular mechanical properties have emerged as central regulators of many critical cell behaviors, including proliferation, motility, and differentiation. Although investigators have developed numerous techniques to influence these properties indirectly by engineering the extracellular matrix (ECM), relatively few tools are available to directly engineer the cells themselves. Here we present a genetic strategy for obtaining graded, dynamic control over cellular mechanical properties by regulating the expression of mutant mechanotransductive proteins from a single copy of a gene placed under a repressible promoter. With the use of constitutively active mutants of RhoA GTPase and myosin light chain kinase, we show that varying the expression level of either protein produces graded changes in stress fiber assembly, traction force generation, cellular stiffness, and migration speed. Using this approach, we demonstrate that soft ECMs render cells maximally sensitive to changes in RhoA activity, and that by modulating the ability of cells to engage and contract soft ECMs, we can dynamically control cell spreading, migration, and matrix remodeling. Thus, in addition to providing quantitative relationships between mechanotransductive signaling, cellular mechanical properties, and dynamic cell behaviors, this strategy enables us to control the physical interactions between cells and the ECM and thereby dictate how cells respond to matrix properties.  相似文献   

17.
The aim of this study was to analyze the changes that occur in the population of bone marrow mesenchymal stromal cells (MSCs) during the individual development of an organism. For this purpose, the basic characteristics of MSCs (the content of clonogenic cells, immunophenotype, and potencies to differentiate in vitro and in vivo) in the prenatal, early postnatal, and late postnatal ontogeny of the rat were compared. It is shown that the cloning efficiency of bone marrow MSCs in 10-day-old and adult rats is comparable and hundreds of times smaller than that of bone cells of 20-day-old fetuses with a bone marrow rudiment. The activity of alkaline phosphatase, a marker of osteogenic cells, was found in the majority of colonies formed by MSCs of postnatal bone marrow but not by the fetal bone. By the CD90 expression and potencies for in vitro adipogenesis, the stromal cells from the fetal bone and bone marrow of 9- to 10-day-old rats were comparable with those of the mature bone marrow MSCs but differed from them by the small number of CD73-bearing cells and a weaker ability to osteogenesis in an inductive environment. The analysis of the fate of MSCs from the studied sources after their transplantation to adult rats showed that their ectopic transplantation as part of tissue fragments into the kidney results in the formation of bone tissues and hematopoietic stroma. In diffusion chambers with MSCs that were precultured in vitro, transplantation into the peritoneal cavity led to osteogenesis and chondrogenesis. However, no significant differences in the potencies of bone marrow MSCs for differentiation in vivo depending on the developmental stage have been found. Thus, during ontogeny, bone marrow MSCs enhance the expression of CD73 and the ability to osteogenesis in vitro, whereas the expression of CD90 and the potencies for adipogenesis in induction medium and differentiation in different directions in vivo do not change significantly.  相似文献   

18.
Potentially, adult stem cell-based therapy provides a new therapeutic option for myocardial regeneration. However, to date, with regard to the benefits seen, the mechanisms involved in stem cell-based therapy are not well understood. Suggested pathways proposed so far include fusion of stem cells with cardiomyocytes, transdifferentiation into cardiac and vascular cells and secretion of paracrine factors. In a recent study, our group examined the fate of human adipose tissue-derived stem cells (hASCs) fused with rat cardiomyocytes after treatment with fusion-inducing hemagglutinating virus of Japan (HVJ). In this study, we demonstrated that cells of fused hASC cardiomyocytes display a cardiomyocyte phenotype and spontaneous rhythmic contraction and generate an action potential in vitro. As part of the work underlying this paper, we co-cultured rat neonatal cardiomyocytes with hASCs or pig bone marrow-derived mesenchymal stem cells (MSCs), where ASCs or MSCs had previously been transduced with a lentivirus encoding eGFP. Our data evidence early cardiac contractile proteins, such as Titin and MF20, identified in eGFP-positive cells, suggesting a cardiomyogenic phenotype. Recent work by others has shown that the myogenic conversion increased when BMSCs were cultured with apoptotic cells. In this Extra View article, we review the current understanding of stem cell-derived factors, fusion/partial fusion and the manner in which the exchange of cellular contents between stem cells and cardiomyocytes might contribute to the reprogramming of fully differentiated cardiomyocytes based on recently published literature.  相似文献   

19.
Skinned muscle fibers prepared from fetal rabbit heart (28 days of gestation) showed a marked resistance to acidic pH in the Ca(2+) regulation of force generation, compared to the fibers prepared from adult heart. SDS-PAGE and immunoblot analysis showed that the slow skeletal troponin I was predominantly expressed in the fetal cardiac muscle, while the cardiac isoform was predominantly expressed in the adult cardiac muscle. Direct exchange of purified slow skeletal and cardiac troponin I isoforms into these skinned muscle fibers revealed that cardiac troponin I made the Ca(2+) regulation of contraction sensitive to acidic pH just as in the adult fibers, whereas slow skeletal troponin I made the Ca(2+) regulation of contraction resistant to acidic pH just as in the fetal fibers. These results demonstrate that the troponin I isoform switching accounts fully for the change in the pH dependence of Ca(2+) regulation of contraction in developmental cardiac muscle.  相似文献   

20.
In fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号