首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of inter- and intramolecular distances are important for monitoring structural changes and understanding protein interaction networks. Fluorescence resonance energy transfer and functionalized chemical spacers are the two predominantly used strategies to map short-range distances in living cells. Here, we describe the development of a hybrid approach that combines the key advantages of spectroscopic and chemical methods to estimate dynamic distance information from labeled proteins. Bifunctional spectroscopic probes were designed to make use of adaptable-anchor and length-varied spacers to estimate molecular distances by exploiting short-range collisional electron transfer. The spacers were calibrated using labeled polyproline peptides of defined lengths and validated by molecular simulations. This approach was extended to estimate distance restraints that enable us to evaluate the resting-state model of the Shaker potassium channel.  相似文献   

2.
Single-photon radioluminescence (SPR), the excitation of fluorophores by short-range beta-decay electrons, was developed for the measurement of submicroscopic distances. The cytoplasmic domain of band 3 (cdb3) is the primary, multisite anchorage for the erythrocyte skeleton. To begin to define the membrane arrangement of the highly asymmetrical cdb3 structure, the distance from the bilayer of Cys-201 next to the "hinge" of cdb3 was measured by both SPR and resonance energy transfer (RET). cdb3 was labeled at Cys-201 with fluorescein maleimide. For SPR measurements, the bilayer was labeled with [3H]oleic acid. The corrected cdb3-specific SPR signal was 98 +/- 2 cps microCi-1 [mumol band 3]-1. From this and the signal from a parallel sample in which 3H2O was substituted for [3H]oleic acid to create uniform geometry between 3H and the fluorophores, a Cys-201-to-bilayer separation of 39 +/- 7 A was calculated. Confirmatory distances of 40 and 43 A were obtained by RET between fluorescein on Cys-201 and eosin and rhodamine B lipid probes, respectively. This distance indicates that Cys-201 lies near band 3's vertical axis of symmetry and that the subdomain of cdb3 between the hinge and the membrane is not significantly extended. In addition, these results validate SPR as a measure of molecular distances in biological systems.  相似文献   

3.
B Mitra  G G Hammes 《Biochemistry》1990,29(42):9879-9884
The spatial relationship of specific sites on chloroplast coupling factor, reconstituted in asolectin vesicles, to the bilayer surface has been studied with fluorescence methods. Fluorescence resonance energy transfer measurements have been used to map the distances of closest approach of the N,N'-dicyclohexylcarbodiimide-binding site and the disulfide on the gamma-polypeptide to the bilayer center. The dicyclohexylcarbodiimide site was labeled with N-cyclohexyl-N'-pyrenylcarbodiimide and the gamma-disulfide site with a coumarinyl derivative. The bilayer center was labeled with 25-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-N-methylamino]-27-norc holesterol. The distances obtained, 15 and 43 A, respectively, were combined with previous measurements of the distance of closest approach between these sites and the membrane surface to estimate the perpendicular distances of the sites from the membrane surface. The depth of the dicyclohexylcarbodiimide site was also determined by studying the quenching of fluorescence by 5-, 7-, 12-, and 16-doxylstearic acids. The model developed suggests that the dicyclohexylcarbodiimide site is 6-10 A below the membrane surface and the gamma-disulfide is 16 A above the membrane surface. The distances measured are subject to a considerable uncertainty, but the proposed model provides a useful starting point for further structural studies.  相似文献   

4.
The distance dependence of electron-nuclear dipole-dipole coupling was tested using a series of poly-L-proline based peptides of different length. The poly-proline based peptides were synthesized with a nitroxide spin label on the N-terminus and a tryptophan on the C-terminus, and paramagnetic enhancements of nuclear spin-lattice relaxation rates were measured for the aromatic protons on the tryptophan as a function of the number of proline spacers in the sequence. As expected, paramagnetic enhancements decrease with distance, but the distances deduced from the NMR relaxation rates were shorter than expected for every peptide studied compared to a rigid linear poly-L-proline type II helix structure. Calculations of cross-relaxation rates indicate that this difference is not the result of spin-diffusion or the creation of a spin-temperature gradient in the proton spins caused by the nitroxide. Molecular dynamics simulations were used to estimate dynamically averaged value of (2). These weighted average distances were close to the experimentally determined distances, and suggest that molecular motion may account for differences between the rigid linear models and the distances implied by the NMR relaxation data. A poly-L-prolone peptide synthesized with a central glycine hinge showed dramatic relaxation rate enhancements compared to the peptide of the same length lacking the hinge. Molecular dynamics simulations for the hinged peptide support the notion that the NMR data is a representation of the weighted average distance, which in this case is much shorter than that expected for an extended conformation. These results demonstrate that intermoment distances based on NMR relaxation rates provide a sensitive indicator of intramolecular motions.  相似文献   

5.
Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies.  相似文献   

6.
7.
Double electron-electron resonance (DEER) was applied to determine nanometre spin–spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes’ positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.  相似文献   

8.
B Mitra  G G Hammes 《Biochemistry》1989,28(7):3063-3069
Fluorescence resonance energy-transfer measurements were made on the membrane-bound chloroplast coupling factor. The distances from the N,N'-dicyclohexylcarbodiimide-binding site on the membrane-bound portion of the enzyme (CF0) to the vesicle surface and to two sulfhydryl sites on the gamma-polypeptide were determined. The dicyclohexylcarbodiimide-binding site was labeled with the fluorescent species N-cyclohexyl-N'-pyrenylcarbodiimide. The vesicle surface was labeled with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine. Steady-state energy transfer between the fluorescent-labeled enzyme (energy donor) and varying concentrations of the ethanolamine derivative (energy acceptor) indicated that the distance of closest approach between the energy donor and the outer vesicle surface is 16-24 A. Two specific sites on the gamma-polypeptide were reacted with a coumarinylmaleimide derivative; one is a sulfhydryl that can be labeled only on the thylakoids under energized conditions (the "light" site), while the other is the disulfide site that regulates enzymatic activity. Energy-transfer measurements utilizing steady-state fluorescence and fluorescence lifetime methods indicated that the dicyclohexylcarbodiimide site is approximately 41 A from the light site and approximately 50 A from the gamma-disulfide site. These distances are used to extend the current structural model of the chloroplast coupling factor.  相似文献   

9.
The crossover or nearest neighbor interchange metric has been proposed for use in numerical taxonomy to obtain a quantitative measure of distance between classifications that are modeled as unrooted binary trees with labeled leaves. This metric seems difficult to compute and its properties are poorly understood. A variant called the closest partition distance measure has also been proposed, but no efficient algorithm for its computation has yet appeared and its relationship to the nearest neighbor interchange metric is incompletely understood. I investigate four conjectures concerning the nearest neighbor interchange and closest partition distance measures and establish their validity for trees with as many as seven labeled vertices. For trees in this size range the two distance measures are identical. If a certain decomposition property holds for the nearest neighbor interchange metric, then the two distance measures are also identical at small distances for trees of any size.  相似文献   

10.
The phytochemical study on ten populations of Salvia multicaulis Vahl. revealed that their essential oil qualitative profiles contained a significant amount of monoterpene hydrocarbons, which were the most abundant compounds. Besides, α-Pinene was the major constituent in all studied populations' essential oils. Significant correlations were observed between edaphic parameters and some major essential oil compounds. According to clustering analyses of the chemical data, the S. multicaulis populations were divided into three chemotypes: β-caryophyllene, camphene and camphor, and limonene. The population genetics study showed significant molecular differences among the populations. The Mantel test indicated a significant positive correlation between the geographical distances and genetic diversity, exhibiting a low amount of gene flow and a considerable genetic differentiation value. We also detected four genotypes based on the Nei's genetic distance and structure analysis. The identified chemical and genetic similarities/differences among these populations were correlated with edaphic parameters and geographic distances, suggesting that environmental factors are the primary drivers of the chemical polymorphism of essential oils in S. multicaulis populations.  相似文献   

11.
Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the ??shotgun?? approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the 15N chemical shift and 15N?C1H dipolar couplings, as well as spin-correlations between the (i, i?±?1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an 15N?C15N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled ??seed?? spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B 1 fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.  相似文献   

12.
Resonance energy transfer provides a practical way to measure distances in the range of 10-100 A between sites in biological molecules. Although the relationship between the efficiency of energy transfer and the distance between sites is well described for a single pair of fluorophores, the situation is more difficult when more than two fluorophores are present. Using a Monte Carlo calculation scheme, we demonstrate how resonance energy transfer can be used to measure distances between fluorophores in complex geometries. We demonstrate the versatility of the approach by calculating the efficiency of energy transfer for individual fluorophores randomly distributed in two and three dimensions, for linked pairs of donors and acceptors and pentameric structures of five linked fluorophores. This approach can be used to relate the efficiency of energy transfer to the distances between fluorophores, R0, molecular concentrations, laser power, and donor/acceptor ratios in ensembles of molecules or when many fluorophores are attached to a single molecule such as in multimeric proteins.  相似文献   

13.
Our experiments were designed to test the hypothesis that the cell surface interferon gamma receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions between proteins labeled with blue and green fluorescent proteins in living cells. In our experiments, we used the blue fluorescent protein and green fluorescent protein pair, attached a monochrometer and charge-coupled device camera to a modified confocal microscope, reduced background fluorescence with the use of two-photon excitation, and focused on regions of single cells to provide clear spectra of fluorescence resonance energy transfer. In contrast to the prevailing view, the results demonstrate that the receptor chains are preassociated and that the intracellular domains move apart on binding the ligand interferon gamma. Application of this technology should lead to new rapid methods for high throughput screening and delineation of the interactome of cells.  相似文献   

14.
Isolated Escherichia coli ribosomal protein L11 was labeled with maleimidyl derivatives of coumarin or fluorescein at the thiol group of its single cysteine, then reconstituted singly or in pairs with other fluorescently labeled ribosomal components. The characteristics of fluorescence from the labeled protein were studied and its distance to other components was determined by non-radiative energy transfer. The distance between probes on L11 and cysteine residues on other proteins or the 3' end of the ribosomal RNAs were found to be: S1, 7.4-8.3 nm; S21, 7.6 nm; 23S RNA, 6.9 nm; 5S RNA, 7.6 nm; 16S RNA, greater than 8.5 nm. Considered together with previously published results these distances indicate that the location of L11 in the 50S subunit is below the lateral protuberance characterized by L7/L12.  相似文献   

15.
We demonstrate the feasibility and practical limitations of using steady-state anisotropy to determine distances from fluorescence homotransfer in the context of a protein of known crystal structure. Eight double mutants of T4 lysozyme spanning the distance range between 20 A and 50 A were labeled with a methanethiosulfonate derivative of fluorescein. The measured distances in liquid solution are in agreement with those determined from dipolar coupling between spin labels in the frozen state. They can be interpreted in the context of the crystal structure after accounting for the probe linking arm. Overall, the results establish the necessary calibration for this spectroscopic ruler. The measurement of similar distance trends using independent probes sets the stage for the complementary use of homotransfer and dipolar coupling in the determination of static structures and detection of conformational changes.  相似文献   

16.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

17.
Fluorescence resonance energy transfer on DNA has been studied for the estimation of distances between specific sites. Two kind of fluorophores, donor and acceptor, were incorporated on double-stranded DNA via phosphorothioate linkage (Sp, Rp, or racemic mixture). The thermal stability of labeled DNA's was slightly dependent on the stereochemical orientation of fluorophore, however all of the duplex structures were stable under the conditions for fluorescence study. The distances between donor and acceptor fluorophores, estimated from fluorescence energy transfer, generally agreed with the expected distance in a B-type DNA for the limiting distance.  相似文献   

18.
The geometry of the binary and ternary complexes of two black-eyed pea inhibitors with trypsin and chymotrypsin has been established by distance measurements using the technique of singlet-singlet energy transfer. Triangulation of measured distances in the ternary double-headed complex of the trypsin-chymotrypsin inhibitor (BEPCI) with trypsin and chymotrypsin limits the possible structural models for this complex to those in which the center to center distance between trypsin and chymotrypsin is about 64 A, the distance from the center of trypsin to the single fluorescently labeled tyrosyl residue of the BEPCI dimer is about 33 A, and the distance between the chymotrypsin center and the labeled tyrosine of the inhibitor is about 43 A. Energy transfer results for the trypsin inhibitor (BEPTI) complexes show conclusively that the weak trypsin site is structurally analogous to the strong chymotrypsin binding site of BEPCI. The weak chymotrypsin binding site of BEPTI is structurally analogous to the strong trypsin sites of BEPCI and BEPTI. Corresponding distances in binary and ternary complexes are the same, indicating that little or no structural rearrangement occurs when the ternary complexes are formed. Complex formation was shown to involve tryptophan and tryosine residues of both trypsin and chymotrypsin as judged by absorption and circular dichroism difference spectroscopy. In addition, circular dichroism difference spectra revealed some disulfide contributions.  相似文献   

19.
Recombination is the exchange of genetic material between homologous chromosomes via physical crossovers. High-throughput sequencing approaches detect crossovers genome wide to produce recombination rate maps but are difficult to scale as they require large numbers of recombinants individually sequenced. We present a simple and scalable pooled-sequencing approach to experimentally infer near chromosome-wide recombination rates by taking advantage of non-Mendelian allele frequency generated from a fitness differential at a locus under selection. As more crossovers decouple the selected locus from distal loci, the distorted allele frequency attenuates distally toward Mendelian and can be used to estimate the genetic distance. Here, we use marker selection to generate distorted allele frequency and theoretically derive the mathematical relationships between allele frequency attenuation, genetic distance, and recombination rate in marker-selected pools. We implemented nonlinear curve-fitting methods that robustly estimate the allele frequency decay from batch sequencing of pooled individuals and derive chromosome-wide genetic distance and recombination rates. Empirically, we show that marker-selected pools closely recapitulate genetic distances inferred from scoring recombinants. Using this method, we generated novel recombination rate maps of three wild-derived strains of Drosophila melanogaster, which strongly correlate with previous measurements. Moreover, we show that this approach can be extended to estimate chromosome-wide crossover interference with reciprocal marker selection and discuss how it can be applied in the absence of visible markers. Altogether, we find that our method is a simple and cost-effective approach to generate chromosome-wide recombination rate maps requiring only one or two libraries.  相似文献   

20.
We used resonance energy transfer to examine the distribution of distances between two sites on troponin I (TnI). The donor (D) was the single tryptophan residue at site 158 (Trp 158), and the acceptor (A) was cysteine 133 (Cys 133) which was labeled with N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IE). A distribution of D-A distances results in a distribution of donor decay times, which were resolved by using frequency-domain fluorometry. In the native state we recovered a relatively narrow distribution of D-A distances. The widths of the distance distributions were found to increase progressively and dramatically with increasing concentrations of guanidine hydrochloride. Binding of calcium-free troponin C (TnC) to troponin I did not alter the distance distribution. Addition of Ca2+ to the TnI.TnC complex resulted in a sharper distance distribution and protected against the guanidine hydrochloride induced increase in the width of the distance distribution. Additionally, the same distance distributions were recovered for native and denatured TnI when the Forster distance for energy transfer was decreased by acrylamide quenching. These results demonstrate that distance distributions can be recovered with good accuracy, to the extent of revealing modest changes due to binding of other components. This technique should have widespread applications in studies of protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号