首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teraishi F  Zhang L  Guo W  Dong F  Davis JJ  Lin A  Fang B 《FEBS letters》2005,579(29):6681-6687
Although gemcitabine is a potent therapeutic agent in the treatment of human non-small cell lung cancer (NSCLC), resistance to gemcitabine is common. In this study, we investigated the molecular mechanisms involved in acquired gemcitabine resistance against NSCLC cells. Gemcitabine-resistant NSCLC H1299 cells (H1299/GR) were selected by long-term exposure of parental H1299 cells to gemcitabine. The median inhibitory concentrations of gemcitabine in H1299 and H1299/GR cells were 19.4 and 233.1 nM, respectively. Gemcitabine induced activation of c-Jun NH2-terminal kinase (JNK) in parental H1299 cells but not in H1299/GR cells after 48 h. Blocking JNK activation by pretreatment with SP600125, a specific JNK inhibitor, or by transfection with dominant-negative JNK vectors abrogated gemcitabine-induced apoptosis in parental H1299 cells as evidenced by interruption of caspase activation. Transient transfection with a JNKK2-JNK1 plasmid expressing constitutive JNK1 partially restored the effect of gemcitabine in H1299/GR cells. Our results indicate that gemcitabine-induced apoptosis in human NSCLC H1299 cells requires activation of the JNK signaling pathway. Attenuated JNK activation may contribute to development of acquired gemcitabine resistance in cancer cells.  相似文献   

2.
Overexpression of c-Myc represents the most frequently deregulated genetic event in cancer, and therefore c-Myc may represent a good molecular target for cancer therapy. The human lung carcinoma cell line, NCI-H1299, shows resistance to conventional cancer treatments, such as ionizing radiation (IR) and cisplatin, while the lung carcinoma cell line, NCI-H460, is sensitive to treatment with these agents. However, when treated with a chalcone compound [toluenesulfonylamido-chalcone, 4′-(p-toluene sulfonyl amino)-3,4-dihydroxy chalcone (TSHDC)], cell death was dramatically induced in NCI-H1299 cells as compared to NCI-H460 cells. TSHDC-mediated cytotoxicity was not dependent on the status of p53 and p21. However, TSHDC exerted increased c-Myc-dependent reactive oxygen species (ROS) production in NCI-H1299 cells in which c-Myc is overexpressed, while increased ROS production did not occur in A549 or NCI-H460 cells with a low c-Myc level. Several colon and brain cancer cells also showed a correlation between c-Myc expression and TSHDC-mediated increased cell death. Tumor regression by TSHDC was more dramatic in NCI-H1299 cells than NCI-H460 cells, when these cells were grafted to nude mice. However, in the case of IR and cisplatin, NCI-H460 cells were more sensitive than NCI-H1299 cells. From these results, c-Myc-mediated ROS production may be a good target for screening of novel cancer drugs and TSHDC might be a good candidate as a cancer drug, specifically in cancer cells that overexpress c-Myc.  相似文献   

3.
The compound(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1 H-inden-1-one(BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.  相似文献   

4.
本研究证明了线粒体凋亡途径在布雷菲德菌素A(brefeldin A,BFA)联合顺铂(cis-dichlorodiamine platinum,CDDP)抗非小细胞肺癌(non-small cell lung cancer,NSCLC)中的作用。MTT结果显示,BFA对肺癌GLC-82和NCI-H1299细胞的半数有效抑制浓度(half maximal inhibitory concentration,IC50)分别是100 ng/mL和400 ng/mL,CDDP对GLC-82和NCI-H1299细胞的IC50分别是4 μg/mL和15 μg/mL;而分别采用半量的BFA和CDDP联合处理GLC-82或NCI-H1299细胞后,抑制作用均进一步加强。DAPI染色结果进一步证明了二者的协同作用——与单独用药组相比,细胞核染色质固缩加剧,核裂解碎片增多,乃至形成凋亡小体,表明细胞凋亡的发生。与单药组比较,联合用药导致肺癌GLC-82细胞线粒体膜电位显著下降;q-RT-PCR及Western印迹结果显示,在联合用药早期(24 h),GLC-82细胞可能通过提高Bcl2表达以促进存活;而在联合用药晚期(48 h),细胞已发生不可逆转的凋亡,Bcl2表达受抑制,同时二者通过促进Bax表达来诱导细胞色素C释放,使胱天蛋白酶 3发生剪切激活,最终诱导细胞凋亡发生。提示线粒体凋亡途径可能是BFA协同CDDP抗非小细胞肺癌的分子机制之一,为肺癌的临床治疗方案提供了更多的理论依据。  相似文献   

5.
6.
This study examined the effects of p53 gene status on DNA damage-induced cell death and chemosensitivity to various chemotherapeutic agents in non-small cell lung cancer (NSCLC) cells. A mutant p53 gene was introduced into cells carrying the wild-type p53 gene and also vice versa to introduce the wild-type p53 gene into cells carrying the mutant p53 gene. Chemosensitivity and DNA damage-induced apoptosis in these cells were then examined. This study included five cell lines, NCI-H1437, NCI-H727, NCI-H441 and NCI-H1299 which carry a mutant p53 gene and NCI-H460 which carries a wild-type p53 gene. Mutant p53-carrying cells were transfected with the wild-type p53 gene, while mutant p53 genes were introduced into NCI-H460 cells. These p53 genes were individually mutated at amino acid residues 143, 175, 248 and 273. The representative cell line NCI-H1437 cells transfected with wild-type p53 gene (H1437/wtp53) showed a dramatic increase in susceptibility to three anticancer agents (7-fold to cisplatin, 21-fold to etoposide, and 20-fold to camptothecin) compared to untransfected or neotransfected H1437 cells. An increase in chemosensitivity was also observed in wild-type p53 transfectants of H727, H441, H1299 cells. The results of chemosensitivity were consistent with the observations on apoptotic cell death. H1437/wtp53 cells, but not H1437 parental cells, exhibited a characteristic feature of apoptotic cell death that generated oligonucleosomal-sized DNA fragments. In contrast, loss of chemosensitivity and lack of p53-mediated DNA degradation in response to anticancer agents were observed in H460 cells transfected with mutant p53. These observations suggest that the increase in chemosensitivity was attributable to wild-type p53 mediation of the process of apoptosis. In addition, our results also suggest that p53 gene status modulates the extent of chemosensitivity and the induction of apoptosis by different anticancer agents in NSCLC cells.  相似文献   

7.
Jakowlew SB  Zakowicz H  Moody TW 《Peptides》2000,21(12):1831-1837
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA.  相似文献   

8.
Trichloroethylene (TCE) and perchloroethylene (PERC) are volatile organic compounds (VOCs) that are primarily inhaled through the respiratory system. The aim of this study was to elucidate the role of glutathione (GSH) and p53 in TCE- and PERC-induced lung toxicity. Human lung adenocarcinoma cells NCI-H460 (p53-wild-type) have constitutively lower levels of GSH than NCI-H1299 (p53-null) cells. The results showed that exposure to vapor TCE and PERC produced a dose-dependent and more pronounced accumulation of H(2)O(2) in p53-WT H460 than p53-null H1299 cells. The accumulation of H(2)O(2) was accompanied by severe cellular damage, as indicated by the significant increase of lipid peroxidation and apoptosis in p53-WT H460 cells, but not p53-null H1299 cells. Cotreatment of p53-WT H460 cells with free radical scavengers, such as D-mannitol, uric acid, and sodium selenite, significantly attenuated the TCE- or PERC-induced lipid peroxidation. In contrast, depletion of GSH in p53-null H1299 cells enhanced TCE- or PERC-induced lipid peroxidation. The levels of p53 and Bax proteins were elevated, while Bcl-2 protein was downregulated in TCE- or PERC-treated p53-WT H460 cells. Activity of caspase 3, the apoptotic executioner, was also significantly enhanced in TCE- or PERC-treated cells. These data suggest that, in human lung cancer cells, GSH plays a vital role in the protection of TCE- and PERC-induced oxidative stress and apoptosis, which may be mediated through a p53-dependent pathway.  相似文献   

9.
Lung cancer remains the leading cause of cancer mortality because of its metastatic potential and high malignancy. The discovery of new applications for old drugs is a shortcut for cancer therapy. We recently investigated the antitumor effect of digoxin, a well-established drug for treating heart failure, against nonsmall cell lung cancer A549 and H1299 cells. Digoxin inhibited the proliferation and colony-forming ability of the two cell lines and arrested the cell cycle at the G0/G1 phase in A549 cells and the G2/M phase in H1299 cells. Mitochondria-mediated apoptosis was induced in A549 cells but not in H1299 cells after treatment with digoxin. Moreover, digoxin inhibited the migration, invasion, adhesion and epithelial–mesenchymal transition of A549 and H1299 cells. Autophagy was induced in both cell lines after treatment with digoxin, with an increase in autophagosome foci. In addition, digoxin inhibited the phosphorylation of Akt, mTOR and p70S6K, signaling molecules of the PI3K/Akt pathway that are known to be involved in tumor cell survival, proliferation, metastasis and autophagy. Our findings suggest that digoxin has the potential to be used for therapy for human nonsmall cell lung cancer, but further evidence is required.  相似文献   

10.
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA.  相似文献   

11.
We previously identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistant biomarker in p53 wild-type A549 cells and found that p53-dependent induction of the PUMA pathway was a critical event in regulating the radioresistant phenotype. Here, we found that HRP-3 knockdown regulates the radioresistance of p53-null H1299 cells through a distinctly different molecular mechanism. HRP-3 depletion was sufficient to cause apoptosis of H1299 cells by generating substantial levels of reactive oxygen species (ROS) through inhibition of the Nrf2/HO-1 antioxidant pathway. Subsequent, ROS-dependent and p53-independent NF-κB activation stimulated expression of c-Myc and Noxa proteins, thereby inducing the apoptotic machinery. Our results thus extend the range of targets for the development of new drugs to treat both p53 wild-type or p53-null radioresistant lung cancer cells.  相似文献   

12.
Previous studies on PTP4A3 mainly focused on tumor metastasis due to the close relationship between the overexpression of lung cancer and metastasis. However, the role of PTP4A3 in the proliferation of tumor still has remained unclear. To investigate the role of PTP4A3 in cell growth of lung cancer, we constructed PTP4A3-siRNA expressing lentivirus and infected human lung cancer H1299 cells, and then examined the inhibitory effect of PTP4A3 in vitro. The levels of PTP4A3 mRNA and protein in H1299 cells decreased after PTP4A3-siRNA lentivirus infection. The growth and colony formation of the infected cells were also inhibited, indicating that PTP4A3 gene is closely associated with the proliferation of H1299 cells. In addition, after PTP4A3 specific siRNA lentivirus infection, it was notable that whilst H1299 cells in G1 phase apparently reduced, both of H1299 cells in G2/M phase and the cell apoptosis increased significantly. This finding indicated the close relationship between PTP4A3 gene and apoptosis in the H1299 cells. These results come to their conclusion that PTP4A3 plays an important role in the growth of lung cancer cells. PTP4A3 may be considered as a valuable target for anti-tumor therapeutic strategies.  相似文献   

13.
It has been reported that extracts from Asian traditional/medical herbs possess therapeutic agents against cancers, metabolic diseases, inflammatory diseases, and other intractable diseases. In this study, we assessed the molecular mechanisms involved in the anticancer effects of A1E, the extract of Korean medicinal herbs. We examined the role of the cytotoxic and apoptotic pathways in the cancer chemopreventive activity in non-small-cell lung cancer (NSCLC) cell lines NCI-H460 and NCI-H1299. A1E inhibited the proliferation of NCI-H460 more efficiently than NCI-H1299 (p53?/?) cells. The apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blot, RT-PCR, and measurement of mitochondrial membrane potential. A1E induced cellular morphological changes and nuclear condensation at 24 h in a dose-dependent manner. A1E also perturbed cell cycle progression at the sub-G1 stage and altered cell cycle regulatory factors in NCI-H460 cells. Furthermore, A1E inhibited the PI3K/Akt and NF-κB survival pathways, and it activated apoptotic intrinsic and extrinsic pathways. A1E increased the expression levels of members of the extrinsic death receptor complex FasL and FADD. In addition, A1E treatment induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), whereas the expression levels of Bcl-2 and Bcl-xl were downregulated. A1E induced mitochondrial membrane potential collapse and cytochrome C release. Our results suggest that A1E induces apoptosis via activation of both extrinsic and intrinsic pathways and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 cells. In conclusion, these data demonstrate the potential of A1E as a novel chemotherapeutic agent in NSCLC.  相似文献   

14.
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.  相似文献   

15.
The mechanism by which vasoactive intestinal peptide (VIP)-ellipticine (E) conjugates are cytotoxic for human lung cancer cells was investigated. VIP-alanyl-leucyl-alanyl-leucyl-alanine (ALALA)-E and VIP-leucyl-alanyl-leucyl-alanine (LALA)-E inhibited (125)I-VIP binding to NCI-H1299 cells with an IC50 values of 0.5 and 0.1 microM, respectively. VIP-ALALA-E and VIP-LALA-E caused elevation of cAMP in NCI-H1299 cells with ED50 values of 0.7 and 0.1 microM. Radiolabeled VIP-LALA-E was internalized at 37 degrees C and delivered the cytotoxic E into NCI-H1299 cells. VIP-LALA-E inhibited the growth of NCI-H1299 cells in vitro. Three days after the addition of VIP-LALA-E to NCI-H1299 cells, cell viability decreased based on trypan blue exclusion and reduced 3H-thymidine uptake. These results suggest that VIP-E conjugates are internalized in lung cancer cells as a result of VPAC1 receptor-mediated endocytosis.  相似文献   

16.
Previously, we identified differentially expressed proteins, including ADFP, between lung adenocarcinoma (LAC) tissue and paired normal bronchioloalveolar epithelium. In this study, we investigated the role of ADFP in LAC. ADFP levels in the serum of patients with lung cancer and benign diseases were measured by enzyme-linked immunosorbent assays (ELISA). shRNA was used to knock-down or overexpress ADFP in A549 and NCI-H1299 cells. The biological function of ADFP and its underlying mechanisms was evaluated in vivo and in vitro. ADFP was highly expressed in the serum of lung cancer patients, especially those with LAC. ADFP promoted cell proliferation and up-regulated the p-Akt/Akt ratio in A549 and NCI-H1299 cells in vitro. Furthermore, in nude mice, ADFP promoted tumour formation with high levels of p-Akt/Akt, Ki67 and proliferating cell nuclear antigen (PCNA). Similar to the effect of ADFP knock-down, MK-2206 (a phosphorylation inhibitor of Akt) reduced A549 and NCI-H1299 cell proliferation. In ADFP-overexpressing A549 and NCI-H1299 cells, proliferation was suppressed by MK-2206 and returned to the control level. ADFP did not regulate invasion, migration or adhesion in LAC cells. Together, these results suggest that ADFP promotes LAC cell proliferation in vitro and in vivo by increasing Akt phosphorylation level.  相似文献   

17.
18.
The first example of Ca(OH)2-activated p-regioselective synthesis of chrysin-fused chromene was reported through a cascade Michael/cyclization of chrysin and arylidenemalononitrile. The newly synthesized structurally diverse 2-amino 3-cyano chromene-chrysin hybrids 3 were evaluated for their in vitro anticancer activity, and some of the compounds showed stronger anti-proliferative activity against K562, PC-3, A549 and NCI-H1299 than parent compound chrysin, and demonstrated equipotent potency compared with the reference drug of cisplatin. In particular, compound 3h had the highest cytotoxicity towards K562 cells (IC50 = 6.41 µM). Furthermore, compound 3h induced apoptosis of K562 cells in a concentration-dependent manner, as well as induced the apoptosis possibly through promoting the formation of apoptotic DNA of cancer cell via the intrinsic apoptotic pathway. Thus, our results provide in vitro evidence that compound 3h may be a potential candidate for the development of new anti-tumour drugs.  相似文献   

19.
Hemiasterlin (Hem) and dolastatin (Dol) are marine natural products which are cytotoxic for cancer cells. Hem, a tripeptide, and Dol, a hexapeptide, were conjugated with linkers (L) to the universal BB agonist DPhe-Gln-Trp-Ala-Val-betaAla-His-Phe-Nle-NH2(BA1) and the effects of the Hem-BB and Dol-BB conjugates investigated on NCI-H1299 lung cancer cells. Hem-LA-BA1 and Hem-LB-BA1 inhibited specific (125I-Tyr4)BB binding to NCI-H1299 cells, which have BB2 receptors (R), with IC50 values of 15 and 25 nM, respectively. Addition of Hem-LA-BA1 and Hem-LB-BA1 to Fura-2 AM loaded cells containing BB2R, caused elevated cytosolic Ca2+. In a growth assay, Hem-LA-BA1 and Hem-LB-BA1 inhibited the proliferation of NCI-H1299 cells. Dol-succinamide (Dols)-LD-BA1 and Dols-LE-BA1 bound with high affinity to NCI-H1299 cells and elevated cytosolic Ca2+, but did not inhibit the proliferation of NCI-H1299 cells. Also, Hem-LA-BA1 inhibited 125I-DTyr-Gln-Trp-Ala-Val-betaAla-His-Phe-Nle-NH2 (BA2) binding to Balb/3T3 cells transfected with BB1R or BB2R as well as with BRS-3 with IC50 values of 130, 8, and 540 nM, respectively. These results show that Hem-BB conjugates are cytotoxic for cancer cells containing BB2R.  相似文献   

20.
Macrophage recognition of ICAM-3 on apoptotic leukocytes.   总被引:1,自引:0,他引:1  
Cells undergoing apoptosis are cleared rapidly by phagocytes, thus preventing tissue damage caused by loss of plasma membrane integrity. In this study, we show that the surface of leukocytes is altered during apoptosis such that the first Ig-like domain of ICAM-3 (CD50) can participate in the recognition and phagocytosis of the apoptotic cells by macrophages. Macrophage recognition of apoptotic cell-associated ICAM-3 was demonstrated both on leukocytes and, following transfection of exogenous ICAM-3, on nonleukocytes. The change in ICAM-3 was a consistent consequence of apoptosis triggered by various stimuli, suggesting that it occurs as part of a final common pathway of apoptosis. Alteration of ICAM-3 on apoptotic cells permitting recognition by macrophages resulted in a switch in ICAM-3-binding preference from the prototypic ICAM-3 counterreceptor, LFA-1, to an alternative macrophage receptor. Using mAbs to block macrophage/apoptotic cell interactions, we were unable to obtain evidence that either the alternative ICAM-3 counterreceptor alpha d beta 2 or the apoptotic cell receptor alpha v beta 3 was involved in the recognition of ICAM-3. By contrast, mAb blockade of macrophage CD14 inhibited ICAM-3-dependent recognition of apoptotic cells. These results show that ICAM-3 can function as a phagocytic marker of apoptotic leukocytes on which it acquires altered macrophage receptor-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号