首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Smads oppose Hox transcriptional activities   总被引:2,自引:0,他引:2  
  相似文献   

4.
Members of the transforming growth factor-β superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-β pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.  相似文献   

5.
6.
BMP I type receptor inhibitor can selectively inhibit BMP/Smad signaling pathways, mainly by inhibiting the BMP I type receptor activity to prevent phosphorylation of Smad1, Smad5 and Smad9. The aim of the present study was to explore the effects of mouse ovarian granulosa cell function and related gene expression by suppressing BMP/Smad signaling pathway with LDN-193189(A type of BMP I type receptor inhibitor). In this study, we cultivate the original generation of mouse ovarian granular cells then collect cells and cell culture medium after treatment. Cellular localization and expression of Smad9 and P-smad9 proteins was studied by immunofluorescence (IF) in the ovarian granulosa cells of mouse; Related genes mRNA and proteins expression was checked by QRT-PCR and Western blot; Detected the concentration of related hormones by using ELISA kit; finally, the growth of the cells was analyzed by plotting cell growth curve with CCK-8 assay. The results indicate that, suppression of BMP/Smad signaling pathway can inhibit the expression of LHR and FSHR, inhibit cell proliferation and decrease E2 secretion, the mechanism of action maybe reduce the expression of smad9, at the same time, we found that the feedback regulation of smad9 may affect the expression of FSHR and cell proliferation.  相似文献   

7.
8.
Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号