首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】分析丙型肝炎病毒(HCV)核心蛋白(CORE)稳定表达对磷酸烯醇式丙酮酸羧基酶(PCK1)转录水平的影响,并分析HCV CORE调控PCK1转录的分子机制,为进一步阐明HCV感染致2型糖尿病机理的探讨提供新的思路。【方法】利用反转录病毒表达系统构建稳定表达HCV CORE的Huh7-lunet-core细胞系。采用Real-time PCR和萤光素酶报告基因技术检测Huh7-lunet-core细胞系中PCK1、FOXO1以及PGC-1α转录水平变化,并结合Western blot分析FOXO1的活性变化。【结果】HCV CORE的稳定表达显著增强PCK1的转录水平,HCV CORE不影响FOXO1的转录和表达水平,但降低FOXO1的磷酸化水平,激活了FOXO1的转录活性,并增强PGC-1α的mRNA表达水平。【结论】HCV CORE在Huh7-lunet细胞中的稳定表达激活FOXO1的转录活性,并与PGC-1α协同作用,上调PCK1的转录,从而导致肝糖异生过度发生,对HCV CORE调控PCK1转录的分子机制的揭示可能为HCV感染相关的糖尿病的治疗提供新的靶点。  相似文献   

2.
Fructose is a key dietary factor in the development of nonalcoholic fatty liver disease (NAFLD). Here we investigated whether WAY-362450 (WAY), a potent synthetic and orally active FXR agonist, protects against fructose-induced steatosis and the underlying mechanisms. C57BL/6J mice, fed 30% fructose for 8 weeks, were treated with or without WAY, 30 mg/kg, for 20 days. The elevation of serum and hepatic triglyceride in mice fed 30% fructose was reversed by WAY treatment. Histologically, WAY significantly reduced triglyceride accumulation in liver, attenuated microphage infiltration and protected the junction integrity in intestine. Moreover, WAY remarkably decreased portal endotoxin level, and lowered serum TNFα concentration. In lipopolysaccharide (LPS)-induced NAFLD model, WAY attenuated serum TNFα level. Moreover, WAY suppressed LPS-induced expression of hepatic lipid droplet protein adipose differentiation-related protein (ADRP), down-regulation of it in mice fed 30% fructose. Furthermore, WAY repressed lipid accumulation and ADRP expression in a dose-dependent manner in palmitic acid (PA)-treated HepG2 and Huh7 cells. WAY suppressed TNFα-induced ADRP up-regulation via competing with AP-1 for ADRP promoter binding region. Together, our findings suggest that WAY, an FXR agonist, attenuates liver steatosis through multiple mechanisms critically involved in the development of hepatosteatosis, and represents a candidate for NAFLD treatment.  相似文献   

3.
目的:构建携带突变Kras基因,以增强型绿色荧光蛋白(EGFP)为报告基因的重组真核表达载体,并导入两种不同的肝细胞株中表达。方法:PCR扩增突变Kras目的基因,将该全长基因定向克隆至真核表达载体pEGFP-N1上,构建重组质粒载体。并利用脂质体转染人肝癌细胞株Huh7.5和鸡肝癌细胞株LMH,在活细胞状态下用荧光显微镜直接观察Kras-EGFP融合蛋白在细胞中的表达;用WesternBlotting方法验证Kras蛋白水平的表达。结果:酶切和测序证实pEGFP—N1-Kras重组质粒构建正确,将EGFP报告基因融合在突变的Kras基因的3’端;在Huh7.5和LMH中均观察到了绿色荧光,转染率分别为19%和53%;WesternBlott—ing也检测到融合蛋白的表达。结论:通过基因克隆方法成功构建了pEGFP—N1-Kras重组质粒载体,并且在Huh7.5和LMH中均稳定表达,为下一步筛选针对突变Kras基因的靶向药物奠定了基础。  相似文献   

4.
5.
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.  相似文献   

6.
Cellular lipid droplets (LD) are organelles involved in cellular lipid metabolism. When liver cellular components were fractionated using sucrose density gradient centrifugation, adipose differentiation-related protein (ADRP) was distributed in both the top and bottom fractions, which correspond to the LD and membranous fractions, respectively, in the mouse liver under normal feeding conditions. After overnight fasting, triacylglycerol and ADRP increased nearly 2.5-fold in the mouse liver, and a portion appeared in the intermediate-density LD (iLD) fractions. ADRP in the iLD fractions was also increased in a mouse nonalcoholic steatohepatitis model induced by methione/choline-deficient diet. When HuH-7 human hepatoma cells were incubated with oleic acid for 24 h, the amount of ADRP increased, and it was distributed in both the LD and membrane fractions. However, ADRP appeared in the iLD fractions upon treatment of HuH-7 cells with glucagon. This behavior of ADRP was cAMP-dependent, as the ADRP-positive iLD fractions were induced by dibutylyl cAMP and were blocked by protein kinase A inhibitors. A portion of ADRP colocalized microscopically with calnexin, which is present in the iLD fractions, by treatment of HuH-7 cells or human primary hepatocytes with oleic acid and glucagon, but not by treatment with oleic acid alone. Glucagon has a role in the reorganization of endoplasmic reticulum membranes to generate ADRP-associated lipid-poor particles in hepatic cells, which is related to LD formation during lipid storage.  相似文献   

7.
8.
9.
Hepatocytes play a crucial role in regulating lipid metabolism by exporting cholesterol and triglyceride into plasma through secretion of very low density lipoproteins (VLDL). VLDL production is also required for release of hepatitis C virus (HCV) from infected hepatocytes. Here, we show that long chain acyl-CoA synthetase 3 (ACSL3) plays a crucial role in secretion of VLDL and HCV from hepatocytes. In cultured human hepatoma Huh7 cells, ACSL3 is specifically required for incorporation of fatty acids into phosphatidylcholine. In cells receiving small interfering RNA targeting ACSL3, secretion of apolipoprotein B, the major protein component of VLDL, was inhibited and the lipoprotein was rapidly degraded. This inhibition in secretion was completely eliminated when these cells were treated with phosphatidylcholine. Treatment of cells with small interfering RNA targeting ACSL3 also inhibited secretion of HCV from Huh7-derived cells. These results identify ACSL3 as a new enzymatic target to limit VLDL secretion and HCV infection.  相似文献   

10.
PON1 is a high density lipoprotein-associated enzyme that plays an important role in organophosphate detoxification and prevention of atherosclerosis. In vivo animal and human studies have indicated that estradiol (E2) supplementation enhances serum PON1 activity. In this study, we sought to determine if E2 directly up-regulates cell-associated PON1 activity in vitro and to characterize the mechanism of regulation. In vitro E2 treatment of both the human hepatoma cell line Huh7 and normal rat hepatocytes resulted in a 2- to 3-fold increase in cell-associated PON1 catalytic activity. E2 potently induced PON1 activity with average EC50 values of 15 nM for normal hepatocytes and 68 nM for Huh7. The enhancement of PON1 activity by E2 was blocked by the estrogen receptor (ER) antagonist ICI 182,780 indicating that E2 was acting through the ER. The up-regulation of PON1 activity by E2 did not involve enhancement of PON1 mRNA or protein levels and did not promote secretion of PON1. Thus, E2 can enhance cell-associated PON1 activity in vitro without altering PON1 gene expression or protein level. Our data suggest that E2 may regulate the specific activity and/or stability of cell surface PON1.  相似文献   

11.
The objective of this study was to investigate the molecular mechanism of how TUG1 interferes with the expression of C/EBP homologous protein (CHOP), peroxisome-proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α), which contributes to the development of diabetic nephropathy. Real-time polymerase chain reaction and western blot analysis were performed to explore the regulatory relationship among TUG1, CHOP, PGC-1α, and caspase-3. Terminal deoxynucleotidyl transferase dUTP nick-end labeling was performed to confirm TUG1 involved in diabetic nephropathy (DN) through influencing podocytes apoptosis. TUG1 was highly expressed in a cell following treatment with high glucose, and PGC-1α and cleaved caspase-3 levels were much lower, while CHOP level was much higher in high glucose group (HG), furthermore, CHOP inhibited PGC-1α expression. TUG1 negatively regulated CHOP expression, and positively regulated PGC-1α expression. Meanwhile, total caspase-3 level in cell treated with or without HG transfected with CHOP small interfering ribonucleic acid (siRNA), TUG1, and TUG1 siRNA showed no evident difference with their corresponding control, while CHOP siRNA and TUG1 evidently decreased, and TUG1 siRNA remarkably increased cleaved caspase-3 level in HG or normal glucose groups in comparison with corresponding control. TUG1 and PGC-1α levels were much lower, while CHOP level was much higher in participants diagnosed with DN. A higher level of CHOP protein and lower level of PGC-1α were observed in subjects diagnosed with DN. Finally, podocytes apoptosis in the DN group was significantly promoted compared with that in nondiabetic renal disease group. Our current study has suggested for the first time that the long noncoding RNA (lncRNA) TUG1 influenced podocytes apoptosis via mediating endoplasmic reticulum stress (ERS)–CHOP–PGC-1α signaling pathway in HG-induced DN.  相似文献   

12.
旨在构建稳定表达HCV核心蛋白的稳定细胞系Huh7-Core并进行初步的生物学功能研究.利用PCR技术扩增HCV核心蛋白基因,通过酶切连接反应将目的基因克隆至载体pSEB-3Flag中,将重组质粒pSEB-3F-Core和辅助质粒pAmpho共转染Huh7细胞,经过Blasticidine抗性筛选,建立稳定表达HCV核心蛋白的肝癌细胞系Huh7-Core.采用RT-PCR、Western blot鉴定Huh7-Core细胞株中核心蛋白的稳定表达并采用MTS、结晶紫试验观察Huh7-Core稳定细胞株的增殖情况.结果显示,成功构建了表达HCV核心蛋白的稳定细胞株Huh7-Core.结晶紫、MTS试验证实Huh7-Core细胞较Huh7-3Flag细胞增殖速度增快,表达HCV核心蛋白的Huh7-Core稳定细胞株构建成功,Core稳定表达后可促进Huh7细胞生长速度.  相似文献   

13.
14.
15.
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.  相似文献   

16.
17.
18.
In contrast to human hepatocytes in vivo, which solely express acyl-coenzyme A:cholesterol acyltransferase (ACAT) 2, both ACAT1 and ACAT2 (encoded by SOAT1 and SOAT2) are expressed in primary human hepatocytes and in human hepatoma cell lines. Here, we aimed to create hepatocyte-like cells expressing the ACAT2, but not the ACAT1, protein to generate a model that – at least in this regard – resembles the human condition in vivo and to assess the effects on lipid metabolism. Using the Clustered Regularly Interspaced Short Palindromic Repeats technology, we knocked out SOAT1 in HepG2 and Huh7.5 cells. The wild type and SOAT2-only-cells were cultured with fetal bovine or human serum and the effects on lipoprotein and lipid metabolism were studied. In SOAT2-only-HepG2 cells, increased levels of cholesterol, triglycerides, apolipoprotein B and lipoprotein(a) in the cell media were detected; this was likely dependent of the increased expression of key genes involved in lipid metabolism (e.g. MTP, APOB, HMGCR, LDLR, ACACA, and DGAT2). Opposite effects were observed in SOAT2-only-Huh7.5 cells. Our study shows that the expression of SOAT1 in hepatocyte-like cells contributes to the distorted phenotype observed in HepG2 and Huh7.5 cells. As not only parameters of lipoprotein and lipid metabolism but also some markers of differentiation/maturation increase in the SOAT2-only-HepG2 cells cultured with HS, this cellular model represent an improved model for studies of lipid metabolism.  相似文献   

19.
Zhang P  Liu C  Zhang C  Zhang Y  Shen P  Zhang J  Zhang CY 《FEBS letters》2005,579(6):1446-1452
PGC-1alpha mRNA and protein are elevated in islets from multiple animal models of diabetes. Overexpression of PGC-1alpha impairs glucose-stimulated insulin secretion (GSIS). However, it is not well known which metabolic events lead to upregulation of PGC-1alpha in the beta-cells under pathophysiological condition. In present study, we have investigated effects of chronic hyperlipidemia and hyperglycemia on PGC-1alpha mRNA expression in isolated rat islets. Isolated rat islets are chronically incubated with 0, 0.2 and 0.4 mM oleic acid/palmitic acid (free fatty acids, FFA) or 5.5 and 25 mM glucose for 72 h. FFA dose-dependently increases PGC-1alpha mRNA expression level in isolated islets. FFA also increases PGC-1alpha expression in mouse beta-cell-derived beta TC3 cell line. In contrast, 25 mM glucose decreases expression level of PGC-1alpha. Inhibition of PGC-1alpha by siRNA improves FFA-induced impairment of GSIS in islets. These data suggest that hyperlipidemia and hyperglycemia regulate PGC-1alpha expression in islets differently, and elevated PGC-1alpha by FFA plays an important role in chronic hyperlipidemia-induced beta-cell dysfunction.  相似文献   

20.
Lipid droplets (LDs) are neutral lipid-rich organelles involved in many cellular processes. A well-known example is their accumulation in leukocytes upon activation by pro-inflammatory stimuli such as lipopolysaccharides (LPS) derived from gram-negative bacteria. A role of LDs and LD-associated proteins during inflammation in the brain is unknown, however. We have now studied their dynamics and regulation in microglia, the resident immune cells in the brain. We find that LPS treatment of microglia leads to the accumulation in them of LDs, and enhancement of the size of LDs. This induction of LDs was abolished by triacsin C, an inhibitor of triglyceride biosynthesis. LPS strongly activated c-Jun N-terminal kinase (JNK) and p38 MAPK stress signaling pathways and increased the expression of LD-associated protein perilipin-2 (ADRP) in a time-dependent manner. Immunostaining showed that perilipin-2 in LPS-treated microglia predominantly colocalized with LDs. Inhibitors of p38 α/β (SB203580) and PI3K/Akt pathway (LY294002), but not that of JNK (SP600125), reduced LPS-induced LD accumulation and eliminated the activating effect of LPS on perilipin-2. In addition, cytosolic phospholipase A2 (cPLA2-α), a key enzyme for arachidonic acid release, colocalized with LPS-induced LDs. These observations suggest that LDs may play an important role in eicosanoid synthesis in activated microglia; they provide a novel insight into the regulation of LDs in inflammatory cells of the brain and point to a potential role of p38 α/β in LPS-induced LD accumulation. Collectively, our findings imply that LD formation and perilipin-2 induction could be microglial biomarkers of inflammation in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号