首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies that rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report an apparently novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, after a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 ± 0.06 μm2 s−1) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse, and remains surprisingly stable there. Unexpectedly, however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected intersynaptic exchange of protein.  相似文献   

2.
We report the supramolecular organization of killer Ig–like receptor (KIR) phosphorylation using a technique applicable to imaging phosphorylation of any green fluorescent protein–tagged receptor at an intercellular contact or immune synapse. Specifically, we use fluorescence lifetime imaging (FLIM) to report Förster resonance energy transfer (FRET) between GFP-tagged KIR2DL1 and a Cy3-tagged generic anti-phosphotyrosine monoclonal antibody. Visualization of KIR phosphorylation in natural killer (NK) cells contacting target cells expressing cognate major histocompatibility complex class I proteins revealed that inhibitory signaling is spatially restricted to the immune synapse. This explains how NK cells respond appropriately when simultaneously surveying susceptible and resistant target cells. More surprising, phosphorylated KIR was confined to microclusters within the aggregate of KIR, contrary to an expected homogeneous distribution of KIR signaling across the immune synapse. Also, yellow fluorescent protein–tagged Lck, a kinase important for KIR phosphorylation, accumulated in a multifocal distribution at inhibitory synapses. Spatial confinement of receptor phosphorylation within the immune synapse may be critical to how activating and inhibitory signals are integrated in NK cells.  相似文献   

3.
During the first trimester of human pregnancy, Natural Killer (NK) cells of the maternal uterine mucosa (e.g. decidua) have a unique phenotype and are involved in crucial physiological processes during pregnancy. We investigated whether modifications of the NK receptor repertoire occur during the first trimester of pregnancy. We found significantly decreased expression of KIR2DL1/S1 and KIR2DL2/L3/S2 receptors, NKp30 and NKp44 activatory receptors, and the CD85j (ILT-2) inhibitory receptor. We also observed significantly increased expression of the NKG2D activatory receptor at the decidual NK cell surface. By flow cytometry, we further highlighted an evolution of NK subsets between 8 and 12 weeks of gestation, with a shift from the KIR2DL1/S1+/KIR2DL2/L3/S2+ subset towards the double negative subset, coupled with a decrease of the CD85j+/NKG2D subset in favour of the CD85j/NKG2D+ subset. Furthermore, cell surface expression of NK receptor ligands, including CD85j and NKG2D ligands, has been characterized by flow cytometry on decidual immune CD14+ and CD3+ cells. HLA-G, the high affinity ligand of CD85j, was detected on both cell types. In contrast, NKG2D ligands ULBP-2 ULBP-3 and MICA/B were not expressed on CD14+ and CD3+ cells, however a variable expression of ULBP-1 was observed. The ligand expression of KIR2DL1/S1 and KIR2DL2/L3/S2 was also analyzed: the HLA-C molecule was expressed at a low level on some CD14+ cells whereas it was not detected on CD3+ cell surface. NK receptor ligands are known to be also expressed on the invading placental trophoblast cells. Thus, the phenotypic evolutions of decidual NK cells described in this present study may preserve their activation/inhibition balance during the first trimester of pregnancy.  相似文献   

4.
Liu HP  Yu MC  Jiang MH  Chen JX  Yan DP  Liu F  Ge BX 《Cellular signalling》2011,23(2):487-496
Inhibitory signaling is crucial in the regulation of the cytotoxicity of natural killer (NK) cells. Here, we show that KIR2DL1, an inhibitory receptor of NK cells, associates with supervillin, an F-actin binding protein. Interaction of supervillin with KIR2DL1 is dependent on the KIR2DL1 receptor stimulation and requires the phosphorylation of tyrosines in both ITIM motifs. “Knockdown” of expression of supervillin by RNA interference (RNAi) restores the KIR2DL1-suppressed cytotoxicity of NK cells. Inhibition of supervillin by RNAi also enhances the polarization of cytolytic granules (both granzyme B and perforin) to the synapse formed between YTS-GFP-KIR2DL1 NK cells and 721.221-HLA-Cw4 target cells. Further study reveals that supervillin is required for KIR2DL1-mediated inhibition of Vav1 and ERK phoshorylation. Moreover, we have found that binding of supervillin with KIR2DL1 facilitates the recruitment of SHPs especially SHP-2 to KIR2DL1 receptor. Thus, our findings demonstrate that supervillin is a novel molecule that associates with KIR2DL1 receptor and regulates the inhibitory signaling in NK cells.  相似文献   

5.
Accumulating evidence suggests an important role for Natural Killer (NK) cells in the control of HIV-1 infection. Recently, it was shown that NK cell-mediated immune pressure can result in the selection of HIV-1 escape mutations. A potential mechanism for this NK cell escape is the selection of HLA class I-presented HIV-1 epitopes that allow for the engagement of inhibitory killer cell immunoglobulin-like receptors (KIRs), notably KIR2DL2. We therefore investigated the consequences of sequence variations within HLA-Cw*0102-restricted epitopes on the interaction of HLA-Cw*0102 with KIR2DL2 using a large panel of overlapping HIV-1 p24 Gag peptides. 217 decameric peptides spanning the HIV-1 p24 Gag consensus sequence were screened for HLA-Cw*0102 stabilization by co-incubation with Cw*0102(+)/TAP-deficient T2 cells using a flow cytometry-based assay. KIR2DL2 binding was assessed using a KIR2DL2-IgG fusion construct. Function of KIR2DL2(+) NK cells was flow cytometrically analyzed by measuring degranulation of primary NK cells after co-incubation with peptide-pulsed T2 cells. We identified 11 peptides stabilizing HLA-Cw*0102 on the surface of T2 cells. However, only one peptide (p24 Gag209–218 AAEWDRLHPV) allowed for binding of KIR2DL2. Notably, functional analysis showed a significant inhibition of KIR2DL2(+) NK cells in the presence of p24 Gag209–218-pulsed T2 cells, while degranulation of KIR2DL2(−) NK cells was not affected. Moreover, we demonstrated that sequence variations in position 7 of this epitope observed frequently in naturally occurring HIV-1 sequences can modulate binding to KIR2DL2. Our results show that the majority of HIV-1 p24 Gag peptides stabilizing HLA-Cw*0102 do not allow for binding of KIR2DL2, but identified one HLA-Cw*0102-presented peptide (p24 Gag209–218) that was recognized by the inhibitory NK cell receptor KIR2DL2 leading to functional inhibition of KIR2DL2-expressing NK cells. Engagement of KIR2DL2 might protect virus-infected cells from NK cell-mediated lysis and selections of sequence polymorphisms that increase avidity to KIR2DL2 might provide a mechanism for HIV-1 to escape NK cell-mediated immune pressure.  相似文献   

6.
Natural killer (NK) cell function, based on the expression of activating and inhibitory natural killer receptors (NKRs), may become abnormal during human immunodeficiency virus (HIV) infection. In this study, we investigated changes in receptor expression with individual and combinational analysis on NK cell subsets in HIV-infected Chinese. The results showed that natural killer group 2 member D (NKG2D) expression on total NK cells decreased significantly in HIV infection, while the expressions of natural killer group 2 member A (NKG2A) and killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail 1 (KIR3DL1) on total NK cells were not significantly different between any of the groups including HIV-positive treatment-naïve group, AIDS treatment-naïve group, HAART-treatment AIDS group and HIV-negative control group. Individual analysis of NKG2A+ and KIR3DL1+ cells revealed no significant differences in expression in any NK cell subsets between any of the groups, but the combinational analysis of NKG2DNKG2A+, and NKG2DKIR3DL1+ on the NK CD56dim cell subset in the AIDS group were increased compared to the HIV-negative control group. On the contrary, NKG2DNKG2A+ expression on the CD56bright subset decreased in the AIDS group compared to the control group. Highly active antiretroviral therapy (HAART) treatment almost completely restored the levels of these receptor expressions. The results indicate that the distinct alteration of activating and inhibitory NKR expression on NK cells and its subsets occurred during HIV progression. Moreover, the imbalanced change of activating and inhibitory NKRs on NK cells and its subsets may explain the impaired NK cell immunity in HIV infected individuals.  相似文献   

7.
Natural killer (NK) cells express killer cell inhibitory receptors (KIRs) that recognize polymorphic class I MHC molecules. In the present study, we analyze the modulatory effect of IL-2 alone or a combination of IL-12 with IL-18 on surface expression of killer cell immunoglobulin-like receptors KIR2DL1, KIR2DL2, and KIR3DL2 in NK cells. Thus, it was found that IL-2 causes a significant increase in the proportion of cells with given studied receptors. Stimulation by a mixture of IL-12 and IL-18 caused significant increase in the fraction of cells with the KIR2DL1 and KIR2DL2, however no significant change in the percentage of cells with KIR3DL2 receptor on their surface was observed. The results of the study show the presence of KIRs on both resting and activated NK cells, this may suggest that KIRs have also an important role in the regulatory processes after activation of this subpopulation of cells.  相似文献   

8.
Interaction of NK cells with target cells leads to formation of an immunological synapse (IS) at the contact site. NK cells form two distinctly different IS, the inhibitory NK cell IS (NKIS) and the cytolytic NKIS. Cognate ligand binding is sufficient to induce clustering of inhibitory killer cell Ig-like receptors (KIR) and phosphorylation of both the receptor and the phosphatase Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1). Recruitment and activation of SHP-1 by a signaling competent inhibitory receptor are essential early events for NK cell inhibition. We have in the present study used three-dimensional immunofluorescence microscopy to analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP demonstrate colocalization of KIR2DL3 with SHP-1 in the center of early inhibitory NKIS. Ligand binding translocates the receptor to the center of the IS where activation signals are accumulating and provides a docking site for SHP-1. SHP-1 and rafts cluster in the center of early inhibitory NKIS and late cytolytic NKIS, and whereas rafts continue to increase in size in cytolytic conjugates, they are rapidly dissolved in inhibitory conjugates. Furthermore, rafts are essential only for cytolytic, not for inhibitory, outcome. These results indicate that the outcome of NK cell-target cell interactions is dictated by early quantitative differences in cumulative activating and inhibitory signals.  相似文献   

9.
Human NK cells use class I MHC-binding inhibitory receptors, such as the killer cell Ig-like receptor (KIR) family, to discriminate between normal and abnormal cells. Some tumors and virus-infected cells down-regulate class I MHC and thereby become targets of NK cells. Substantial evidence indicates that the mechanism of KIR-mediated inhibition involves recruitment of the protein tyrosine phosphatases, Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2, to two phosphorylated cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). KIR2DL5 is a type II member of the KIR2D family with an atypical extracellular domain and an intracytoplasmic domain containing one typical ITIM and one atypical ITIM sequence. Although KIR2DL5 structure is expressed by approximately 50% of humans and is conserved among primate species, its function has not been determined. In the present study, we directly compared functional and biochemical properties of KIR2DL5, KIR3DL1 (a type I KIR with two ITIMs), and KIR2DL4 (the only other type II KIR, which has a single ITIM) in a human NK-like cell line. Our results show that KIR2DL5 is an inhibitory receptor that can recruit both SHP-1 and SHP-2, and its inhibitory capacity is more similar to that of the cytoplasmic domain of KIR2DL4 than KIR3DL1. Interestingly, inhibition of NK cell cytotoxicity by KIR2DL5 was blocked by dominant-negative SHP-2, but not dominant-negative SHP-1, whereas both dominant-negative phosphatases can block inhibition by KIR3DL1. Therefore, the cytoplasmic domains of type II KIRs (2DL4 and 2DL5) exhibit distinct inhibitory capacities when compared with type I KIRs (3DL1), due to alterations in the canonical ITIM sequences.  相似文献   

10.
Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.  相似文献   

11.
Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell-activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it.  相似文献   

12.
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions.  相似文献   

13.
Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells   总被引:6,自引:0,他引:6  
NK cells express both inhibitory and activatory receptors that allow them to recognize target cells through HLA class I Ag expression. KIR3DL1 is a receptor that recognizes the HLA-Bw4 public epitope of HLA-B alleles. We demonstrate that polymorphism within the KIR3DL1 receptor has functional consequences in terms of NK cell recognition of target. Inhibitory alleles of KIR3DL1 differ in their ability to recognize HLA-Bw4 ligand, and a consistent hierarchy of ligand reactivity can be defined. KIR3DS1, which segregates as an allele of KIR3DL1, has a short cytoplasmic tail characteristic of activatory receptors. Because it is very similar to KIR3DL1 in the extracellular domains, it has been assumed that KIR3DS1 will recognize a HLA-Bw4 ligand. In this study, we demonstrate that KIR3DS1 is expressed as a protein at the cell surface of NK cells, where it is recognized by the Z27 Ab. Using this Ab, we found that KIR3DS1 is expressed on a higher percentage of NK cells in KIR3DS1 homozygous compared with heterozygous donors. In contrast to the inhibitory KIR3DL1 allotypes, KIR3DS1 did not recognize HLA-Bw4 on EBV-transformed cell lines.  相似文献   

14.
2B4 is an NK cell activation receptor that can provide a co-stimulatory signal to other activation receptors and whose mode of signal transduction is still unknown. We show that cross-linking of 2B4 on NK cells results in its rapid tyrosine phosphorylation, implying that this initial step in 2B4 signaling does not require coligation of other receptors. Ligation of 2B4 in the context of an NK cell-target cell interaction leads to 2B4 tyrosine phosphorylation, target cell lysis, and IFN-gamma release. Coligation of 2B4 with the inhibitory receptors killer cell Ig-like receptor (KIR)2DL1 or CD94/NKG2 completely blocks NK cell activation. The rapid tyrosine phosphorylation of 2B4 observed upon contact of NK cells with sensitive target cells is abrogated when KIR2DL1 or CD94/NKG2 are engaged by their cognate MHC class I ligand on resistant target cells. These results demonstrate that NK inhibitory receptors can interfere with a step as proximal as phosphorylation of an activation receptor.  相似文献   

15.

Background

Natural killer (NK) cells provide defense in the early stages of the immune response against viral infections. Killer cell immunoglobulin-like receptors (KIR) expressed on the surface of NK cells play an important role in regulating NK cell response through recognition of human leukocyte antigen (HLA) class I molecules on target cells. Previous studies have shown that specific KIR/ligand combinations are associated with the outcome of several viral infectious diseases.

Methods

We investigated the impact of inhibitory and activating KIR and their HLA-class I ligand genotype on the susceptibility to Chikungunya virus (CHIKV) and Dengue virus (DENV2) infections. From April to July 2010 in Gabon, a large outbreak of CHIKV and DENV2 concomitantly occurred in two provinces of Gabon (Ogooué-Lolo and Haut-Ogooué). We performed the genotypic analysis of KIR in the combination with their cognate HLA-class I ligands in 73 CHIKV and 55 DENV2 adult cases, compared with 54 healthy individuals.

Results

We found in CHIV-infected patients that KIR2DL1 and KIR2DS5 are significantly increased and decreased respectively, as compared to DENV2+ patients and healthy donors. The combination of KIR2DL1 and its cognate HLA-C2 ligand was significantly associated with the susceptibility to CHIKV infection. In contrast, no other inhibitory KIR-HLA pairs showed an association with the two mosquito-borne arboviruses.

Conclusion

These observations are strongly suggestive that the NK cell repertoire shaped by the KIR2DL1:HLA-C2 interaction facilitate specific infection by CHIKV.  相似文献   

16.
NK cell activity is partially controlled through interactions between killer Ig-like receptors (KIR) on NK cells and their respective HLA class I ligands. Independent segregation of HLA and KIR genes, along with KIR specificity for particular HLA allotypes, raises the possibility that any given individual may express KIR molecules for which no ligand is present. Inhibitory receptor genes KIR2DL2/3 and KIR2DL1 were present in nearly all subjects sampled in this study, whereas their respective activating homologs, KIR2DS2 and KIR2DS1, are each present in about half of the subjects. In this work we report that subjects with activating KIR2DS1 and/or KIR2DS2 genes are susceptible to developing psoriatic arthritis, but only when HLA ligands for their homologous inhibitory receptors, KIR2DL1 and KIR2DL2/3, are missing. Absence of ligands for inhibitory KIRs could potentially lower the threshold for NK (and/or T) cell activation mediated through activating receptors, thereby contributing to pathogenesis of psoriatic arthritis.  相似文献   

17.
Intercellular transfer of cell surface proteins is widespread and facilitates several recently discovered means for immune cell communication. Here, we examined the molecular mechanism for intercellular exchange of the natural killer (NK) cell receptor KIR2DL1 and HLA-C, prototypical proteins that swap between NK cells and target cells. Transfer was contact dependent and enhanced for cells expressing cognate receptor/ligand pairs but did not depend on KIR2DL1 signaling. To a lesser extent, proteins transferred independent from specific recognition. Intracellular domains of transferred proteins were not exposed to the extracellular environment and transferred proteins were removed by brief exposure to low pH. By fluorescence microscopy, transferred proteins localized to discrete regions on the recipient cell surface. Higher resolution scanning electron micrographs revealed that transferred proteins were located within specific membranous structures. Transmission electron microscopy of the immune synapse revealed that membrane protrusions from one cell interacted with the apposing cell surface within the synaptic cleft. These data, coupled with previous observations, lead us to propose that intercellular protein transfer is mediated by membrane protrusions within and surrounding the immunological synapse.  相似文献   

18.
Upon engagement of specific class I major histocompatibility complex (MHC) molecules on target cells, inhibitory receptors on natural killer (NK) cells deliver a negative signal that prevents the target cell lysis by NK cells. In humans, killer cell immunoglobulin-related receptors (KIR) with two immunoglobulin-like domains (KIR2D) modulate the lysis of target cells bearing specific HLA-C alleles (Moretta, A., Vitale, M., Bottino, C., Orengo, A. M., Morelli, L., Augugliaro, R., Barbaresi, M., Ciccone, E., and Moretta, L. (1993) J. Exp. Med. 178, 597-604). The transduction of inhibitory signals by KIR2D molecules is impaired by the zinc chelator, 1,10-phenanthroline, and mutation of a putative zinc-binding site (Rajagopalan, S., and Long, E. O. (1998) J. Immunol. 161, 1299-1305), but the mechanism by which zinc may affect the function of KIR remains unknown. In this study, the inhibitory NK receptor KIR2DL1 was discovered to dimerize in the presence of Co(2+) as observed on native gel electrophoresis and by gel filtration column chromatography. Furthermore, Co(2+)-mediated KIR2DL1 dimer binds to HLA-Cw4 with higher affinity than the wild type KIR2DL1 monomer. Replacement of the amino-terminal His residue by Ala abolishes the ability of KIR2DL1 to bind Co(2+), indicating that Co(2+)-mediated KIR2DL1 dimerization involves pairing of the D1 domain. Although not observed on native gels, the inhibitory receptor KIR2DL1 can be chemically cross-linked into dimers in the presence of Zn(2+) and its related divalent metal ions, suggesting that Co(2+)-mediated dimerization of KIR2DL1 may mimic a weaker interaction between KIR2DL1 and zinc in vivo.  相似文献   

19.
Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.  相似文献   

20.
Natural killer (NK) cells play an important role in the detection and elimination of tumors and virus-infected cells by the innate immune system. Human NK cells use cell surface receptors (KIR) for class I MHC to sense alterations of class I on potential target cells. Individual NK cells only express a subset of the available KIR genes, generating specialized NK cells that can specifically detect alteration of a particular class I molecule or group of molecules. The probabilistic behavior of human KIR bi-directional promoters is proposed to control the frequency of expression of these variegated genes. Analysis of a panel of donors has revealed the presence of several functionally relevant promoter polymorphisms clustered mainly in the inhibitory KIR family members, especially the KIR3DL1 alleles. We demonstrate for the first time that promoter polymorphisms affecting the strength of competing sense and antisense promoters largely explain the differential frequency of expression of KIR3DL1 allotypes on NK cells. KIR3DL1/S1 subtypes have distinct biological activity and coding region variants of the KIR3DL1/S1 gene strongly influence pathogenesis of HIV/AIDS and other human diseases. We propose that the polymorphisms shown in this study to regulate the frequency of KIR3DL1/S1 subtype expression on NK cells contribute substantially to the phenotypic variation across allotypes with respect to disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号