首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Congenital cataract is the most common cause of treatable visual impairment in children worldwide. Mutations in many different genes lead to congenital cataract. Recently, mutations in the receptor tyrosine kinase gene, EPHA2, have been found to cause congenital cataract in six different families. Although these findings have established EPHA2 as a causative gene, the total contribution of mutations in this gene to congenital cataract is unknown. In this study, for the first time, a population-based approach was used to investigate the frequency of disease causing mutations in the EPHA2 gene in inherited cataract cases in South-Eastern Australia. A cohort of 84 familial congenital or juvenile cataract index cases was screened for mutations in the EPHA2 gene by direct sequencing. Novel changes were assessed for segregation with the disease within the family and in unrelated controls. Microsatellite marker analysis was performed to establish any relationship between families carrying the same mutation. We report a novel congenital cataract causing mutation c.1751C>T in the EPHA2 gene and the previously reported splice mutation c.2826-9G>A in two new families. Additionally, we report a rare variant rs139787163 potentially associated with increased susceptibility to cataract. Thus mutations in EPHA2 account for 4.7% of inherited cataract cases in South-Eastern Australia. Interestingly, the identified rare variant provides a link between congenital and age-related cataract.  相似文献   

3.
4.
Aimβ-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.MethodsGene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.ResultsSixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).ConclusionThis study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism.  相似文献   

5.

Purpose

To describe at molecular level a family with pulverulent congenital cataract associated with a CRYGC gene mutation.

Methods

One family with several affected members with pulverulent congenital cataract and 230 healthy controls were examined. Genomic DNA from leukocytes was isolated to analyze the CRYGA-D cluster, CX46, CX50 and MIP genes through high-resolution melting curve and DNA sequencing.

Results

DNA sequencing in the affected members revealed the c.143G>A mutation (p.R48H) in exon 2 of the CRYGC gene; 230 healthy controls and ten healthy relatives were also analyzed and none of them showed the c.143G>A mutation. No other polymorphisms or mutations were found to be present.

Conclusion

In the present study, we described a family with pulverulent congenital cataract that segregated the c.143G>A mutation (p.R48H) in the CRYGC gene. A few mutations have been described in the CRYGC gene in autosomal dominant cataract, none of them with pulverulent cataract making clear the clinical heterogeneity of congenital cataract. This mutation has been associated with the phenotype of congenital cataract but also is considered an SNP in the NCBI data base. Our data and previous report suggest that p.R48H could be a disease-causing mutation and not an SNP.  相似文献   

6.
Biallelic mutations of UBE3B have recently been shown to cause Kaufman oculocerebrofacial syndrome (also reported as blepharophimosis–ptosis–intellectual disability syndrome), an autosomal recessive condition characterized by hypotonia, developmental delay, intellectual disability, congenital anomalies, characteristic facial dysmorphic features, and low cholesterol levels. To date, six patients with either missense mutations affecting the UBE3B HECT domain or truncating mutations have been described. Here, we report on the identification of homozygous or compound heterozygous UBE3B mutations in six additional patients from five unrelated families using either targeted UBE3B sequencing in individuals with suggestive facial dysmorphic features, or exome sequencing. Our results expand the clinical and mutational spectrum of the UBE3B-related disorder in several ways. First, we have identified UBE3B mutations in individuals who previously received distinct clinical diagnoses: two sibs with Toriello–Carey syndrome as well as the patient reported to have a “new” syndrome by Buntinx and Majewski in 1990. Second, we describe the adult phenotype and clinical variability of the syndrome. Third, we report on the first instance of homozygous missense alterations outside the HECT domain of UBE3B, observed in a patient with mildly dysmorphic facial features. We conclude that UBE3B mutations cause a clinically recognizable and possibly underdiagnosed syndrome characterized by distinct craniofacial features, hypotonia, failure to thrive, eye abnormalities, other congenital malformations, low cholesterol levels, and severe intellectual disability. We review the UBE3B-associated phenotypes, including forms that can mimick Toriello–Carey syndrome, and suggest the single designation “Kaufman oculocerebrofacial syndrome”.  相似文献   

7.
Ion channel disorders affecting the peripheral nervous system can manifest as altered pain perception or neuropathy. Several of these diseases are caused by mutations of the SCN9A gene, which encodes the voltage-gated sodium channel Nav1.7. Whereas SCN9A gain of function mutations cause inherited erythromelalgia and other syndromes that are characterized by paroxysmal episodes of severe pain, loss of SCN9A function underlies congenital inability to experience pain. Together with the discovery of TRPV4 (“transient receptor potential channel 4”) mutations in scapuloperoneal spinal muscular atrophy and Charcot–Marie–Tooth disease type 2C, these data illustrate the central function of ion channels in diseases affecting not only the central but also the peripheral nervous system.  相似文献   

8.
Nijmegen breakage syndrome (NBS) with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin), involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC). Eight missense NBS1 mutations were identified in six of 64 (9.4%) HCCs and two of 18 (11.1%) ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.  相似文献   

9.
PMD (Pelizaeus–Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.  相似文献   

10.
Muscle-eye-brain (MEB) disease is a congenital muscular dystrophy (CMD) phenotype characterized by hypotonia at birth, brain structural abnormalities and ocular malformations. To date, few MEB cases have been reported in China where clinical recognition and genetic confirmatory testing on a research basis are recent developments. Here, we report the clinical and molecular genetics of three MEB disease patients. The patients had different degrees of muscle, eye and brain symptoms, ranging from congenital hypotonia, early-onset severe myopia and mental retardation to mild weakness, independent walking and language problems. This confirmed the expanding phenotypic spectrum of MEB disease with varying degrees of hypotonia, myopia and cognitive impairment. Brain magnetic resonance imaging showed cerebellar cysts, hypoplasia and characteristic brainstem flattening and kinking. Four candidate genes (POMGnT1, FKRP, FKTN and POMT2) were screened, and six POMGnT1 mutations (four novel) were identified, including five missense and one splice site mutation. Pathogenicity of the two novel variants in one patient was confirmed by POMGnT1 enzyme activity assay, protein expression and subcellular localization of mutant POMGnT1 in HeLa cells. Transfected cells harboring this patient’s L440R mutant POMGnT1 showed POMGnT1 mislocalization to both the Golgi apparatus and endoplasmic reticulum. We have provided clinical, histological, enzymatic and genetic evidence of POMGnT1 involvement in three unrelated MEB disease patients in China. The identification of novel POMGnT1 mutations and an expanded phenotypic spectrum contributes to an improved understanding of POMGnT1 structure–function relationships, CMD pathophysiology and genotype–phenotype correlations, while underscoring the need to consider POMGnT1 in Chinese MEB disease patients.  相似文献   

11.
Fatal congenital nonlysosomal cardiac glycogenosis has been attributed to a subtype of phosphorylase kinase deficiency, but the underlying genes and mutations have not been identified. Analyzing four sporadic, unrelated patients, we found no mutations either in the eight genes encoding phosphorylase kinase subunits or in the two genes encoding the muscle and brain isoforms of glycogen phosphorylase. However, in three of five patients, we identified identical heterozygous R531Q missense mutations of the PRKAG2 gene, which encodes the gamma 2-subunit of AMP-activated protein kinase, a key regulator of energy balance. Biochemical characterization of the recombinant R531Q mutant protein showed >100-fold reduction of binding affinities for the regulatory nucleotides AMP and ATP but an enhanced basal activity and increased phosphorylation of the alpha -subunit. Other PRKAG2 missense mutations were previously identified in patients with autosomal dominant hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome, characterized by juvenile-to-adult clinical onset, moderate cardiac glycogenosis, disturbed excitation conduction, risk of sudden cardiac death in midlife, and molecular perturbations that are similar to--but less severe than--those observed for the R531Q mutation. Thus, recurrent heterozygous R531Q missense mutations in PRKAG2 give rise to a massive nonlysosomal cardiac glycogenosis of fetal symptomatic onset and rapidly fatal course, constituting a genotypically and clinically distinct variant of hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome. R531Q and other PRKAG2 mutations enhance the basal activity and alpha -subunit phosphorylation of AMP-activated protein kinase, explaining the dominant nature of PRKAG2 disease mutations. Since not all cases displayed PRKAG2 mutations, fatal congenital nonlysosomal cardiac glycogenosis seems to be genetically heterogeneous. However, the existence of a heart-specific primary phosphorylase kinase deficiency is questionable, because no phosphorylase kinase mutations were found.  相似文献   

12.
X-linked liver glycogenosis (XLG) resulting from phosphorylase kinase (Phk) deficiency is one of the most common forms of glycogen storage disease. It is caused by mutations in the gene encoding the liver isoform of the Phk α subunit (PHKA2). In the present study, we address the issue of phenotypic and allelic heterogeneity in XLG. We have identified mutations in seven male patients. One of these patients represents the variant biochemical phenotype, XLG subtype 2 (XLG2), where Phk activity is low in liver but normal or even elevated in erythrocytes. He carries a K189E missense mutation, which adds to the emerging evidence that XLG2 is associated with missense mutations clustering at a few sites. Two patients display clinical phenotypes unusual for liver Phk deficiency, with dysfunction of the kidneys (proximal renal tubular acidosis) or of the nervous system (seizures, delayed cognitive and speech abilities, peripheral sensory neuropathy), respectively, in addition to liver glycogenosis. In the patient with kidney involvement, we have identified a missense mutation (P399S) and a trinucleotide deletion (2858del3) leading to the replacement of two amino acids by one new residue (N953/L954I), and a missense mutation has also been found in the patient with neurological symptoms (G1207W). These two cases demonstrate that PHKA2 mutations can also be associated with uncommon clinical phenotypes. Finally, in four typical XLG cases, we have identified three truncating mutations (70insT, R352X, 567del22) and an in-frame deletion of eight well-conserved amino acids (2452del24). Together, this study adds eight new mutations to the previously known complement of sixteen PHKA2 mutations. All known PHKA2 mutations but one are distinct, indicating pronounced allelic heterogeneity of X-linked liver glycogenosis with mutations in the PHKA2 gene. Received: 17 October 1997 / Accepted: 23 December 1997  相似文献   

13.
14.
Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed.  相似文献   

15.
Inherited retinal disorders (IRDs) result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER) causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR) complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention.  相似文献   

16.
17.
Many studies have shown that missense mutations might play an important role in carcinogenesis. However, the extent to which cancer mutations might affect biomolecular interactions remains unclear. Here, we map glioblastoma missense mutations on the human protein interactome, model the structures of affected protein complexes and decipher the effect of mutations on protein-protein, protein-nucleic acid and protein-ion binding interfaces. Although some missense mutations over-stabilize protein complexes, we found that the overall effect of mutations is destabilizing, mostly affecting the electrostatic component of binding energy. We also showed that mutations on interfaces resulted in more drastic changes of amino acid physico-chemical properties than mutations occurring outside the interfaces. Analysis of glioblastoma mutations on interfaces allowed us to stratify cancer-related interactions, identify potential driver genes, and propose two dozen additional cancer biomarkers, including those specific to functions of the nervous system. Such an analysis also offered insight into the molecular mechanism of the phenotypic outcomes of mutations, including effects on complex stability, activity, binding and turnover rate. As a result of mutated protein and gene network analysis, we observed that interactions of proteins with mutations mapped on interfaces had higher bottleneck properties compared to interactions with mutations elsewhere on the protein or unaffected interactions. Such observations suggest that genes with mutations directly affecting protein binding properties are preferably located in central network positions and may influence critical nodes and edges in signal transduction networks.  相似文献   

18.
Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.  相似文献   

19.
Congenital myopathies are severe muscle disorders affecting adults as well as children in all populations. The diagnosis of congenital myopathies is constrained by strong clinical and genetic heterogeneity. Moreover, the majority of patients present with unspecific histological features, precluding purposive molecular diagnosis and demonstrating the need for an alternative and more efficient diagnostic approach. We used exome sequencing complemented by histological and ultrastructural analysis of muscle biopsies to identify the causative mutations in eight patients with clinically different skeletal muscle pathologies, ranging from a fatal neonatal myopathy to a mild and slowly progressive myopathy with adult onset. We identified RYR1 (ryanodine receptor) mutations in six patients and NEB (nebulin) mutations in two patients. We found novel missense and nonsense mutations, unraveled small insertions/deletions and confirmed their impact on splicing and mRNA/protein stability. Histological and ultrastructural findings of the muscle biopsies of the patients validated the exome sequencing results. We provide the evidence that an integrated strategy combining exome sequencing with clinical and histopathological investigations overcomes the limitations of the individual approaches to allow a fast and efficient diagnosis, accelerating the patient’s access to a better healthcare and disease management. This is of particular interest for the diagnosis of congenital myopathies, which involve very large genes like RYR1 and NEB as well as genetic and phenotypic heterogeneity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号