首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+ ionophore X-537A is employed as a tool to distinguish between intravesicular Ca2+ and surface membrane-bound Ca2+ in sarcoplasmic reticulum isolated from rabbit skeletal muscle. When sarcoplasmic reticulum is incubated in 20 mM Ca2+ in the absence of ATP, 10-12 h are necessary for measurable amount of Ca2+ to penetrate into the vesicular space, as determined by the fact that X-537A releases Ca2+ from 'loaded' vesicles only after this period of incubation. A fraction of Ca2+ of 50-60 nmol/mg protein, rapidly taken up by sarcoplasmic reticulum, exchanges with Mg2+ and K+ in the medium and is readily released by ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid, but it is not released by X-537A. The slow-penetrating fraction of Ca2+ (30-40 nmol/mg protein) is rapidly released X-537A. The results indicate that most of the Ca2+ retained by sarcoplasmic reticulum under conditions of passive uptake is bound to the external side of the membrane. The fraction of Ca2+ that slowly penetrates the vesicles remains essentially free inside the vesicles and only a small part is bound to the internal side of the membrane.  相似文献   

2.
G Müller  W Bandlow 《Biochemistry》1989,28(26):9968-9973
We describe the first example of a mitochondrial protein with a covalently attached phosphatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cerevisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified cAMP-binding protein through a phospholipase activity.  相似文献   

3.
To sort out possible influences of protein sequences and fatty acid acylation on the plasma membrane association of simian virus 40 large T-antigen, we have analyzed the membrane interactions of carboxy-terminal fragments of large T-antigen, encoded by the adenovirus type 2 (Ad2+)-simian virus 40 hybrid viruses Ad2+ND1 and Ad2+ND2. The 28,000 (28K)-molecular-weight protein of Ad2+ND1 as well as the 42K and 56K proteins of Ad2+ND2 associate preferentially with membranous structures and were found in association with the membrane system of the endoplasmic reticulum and with plasma membranes. Neither the endoplasmic reticulum membrane- nor the plasma membrane-associated 28K protein of Ad2+ND1 is fatty acid acylated. We, therefore, conclude that fatty acid acylation is not necessary for membrane association of this protein and suggest that an amino acid sequence in this protein is responsible for its membrane interaction. In contrast, the 42K and 56K proteins of Ad2+ND2 in plasma membrane fractions contain fatty acid. However, the interaction of these proteins with the plasma membrane differs from that of the 28K protein of Ad2+ND1: whereas the 28K protein of Ad2+ND1 interacts stably with Nonidet P-40-soluble constituents of the plasma membrane, the 42K and 56K proteins of Ad2+ND2 are tightly bound to the Nonidet P-40-insoluble plasma membrane lamina. Thus, an amino acid sequence in the amino-terminal region of the 28K protein confers membrane affinity to these proteins, whereas a region between the amino-terminal end of the 42K protein of Ad2+ND2 and the amino-terminal end of the 28K protein of Ad2+ND1 contains a reactive site for fatty acid acylation. This posttranslational modification correlates with the stable association of the 42K and 56K proteins with the plasma membrane lamina. We suggest that the same sequences also mediate the proper plasma membrane association of large T-antigen in simian virus 40-transformed cells.  相似文献   

4.
The GTPase activating protein, p120GAP, contains an amino acid sequence motif called the Ca2+-dependent lipid binding domain (CaLB) which mediates a protein-protein interaction between p120GAP and annexin VI and also binds to negatively charged phospholipids. Because membrane association of p120GAP is important for the regulation of p21 Ras activity, we have studied the roles played by Ca2+, phospholipids and annexin VI in the membrane association of p120GAP. Here we demonstrate that a truncated CaLB domain GST fusion protein (GSTGAP618-632), lacking the ability to bind to phospholipids, is able to bind to rat fibroblast membranes in a Ca2+- and concentration-dependent manner. In addition, this fusion protein also binds to annexin VI in an amino acid sequence specific but Ca2+ independent manner. Also, when bound to annexin VI in the presence of Ca2+, this fusion protein has the ability to co-bind to phosphatidylserine vesicles. Thus, annexin VI may simultaneously mediate an interaction with p120GAP and also an interaction with membrane phospholipids. This may in part explain the mechanism by which p120GAP associates with membranes in response to Ca2+ elevation and suggests the potential importance of annexin VI in the regulation of p21 Ras and the role CaLB domains may play in the specific recognition of cellular membranes.  相似文献   

5.
M F Schmidt  M J Schlesinger 《Cell》1979,17(4):813-819
The glycoprotein (G) of vesicular stomatitis virus (VSV) binds 1–2 moles of fatty acid per mole of protein. The fatty acids cannot be released by repeated extractions of the protein with organic solvents, nor can they be released by denaturing the protein with ionic or nonionic detergents. Pronase digestion of G yields an organic extractable fragment that contains bound fatty acid. The fatty acid is quantitatively released from this fragment and from intact G by mild alkali treatment in methanol and is identified by gas-liquid and thin-layer chromatography as, predominantly, the methyl ester of palmitic acid. Insignificant amounts of phosphate are found in G, thus ruling out the presence of bound phospholipid. Chicken embryo fibroblast pre-labeled with 3H-palmitate and then infected with VSV for 4 hr show the presence of 3H label in G but not in other viral structural proteins. The 3H label is present only in the fatty acid moiety of the protein. Much smaller amounts of 3H fatty acid are bound to G protein formed by the VSV mutant ts045 grown at the nonpermissive temperature, and no 3H fatty acid is bound to G synthesized at 37°C in cells pretreated with tunicamycin, an inhibitor of glycosylation. However, infection with the VSV-Orsay strain at 30°C in the presence of tunicamycin allows for production of VSV particles with nonglycosylated G (Gibson, Schlesinger and Kornfeld, 1979), and this G has the same proportion of the fatty acid as does the normal glycosylated G. These data indicate that fatty acids become covalently attached to the G polypeptide chain during maturation of the protein—perhaps as the glycoprotein moves to the cell's plasma membrane.  相似文献   

6.
Ames JB  Hamasaki N  Molchanova T 《Biochemistry》2002,41(18):5776-5787
Recoverin, a member of the EF-hand superfamily, serves as a calcium sensor in retinal rod cells. A myristoyl or related fatty acyl group covalently attached to the N-terminus of recoverin facilitates the binding of recoverin to retinal disk membranes by a mechanism known as the Ca2+-myristoyl switch. Previous structural studies revealed that the myristoyl group of recoverin is sequestered inside the protein core in the absence of calcium. The cooperative binding of two calcium ions to the second and third EF-hands (EF-2 and EF-3) of recoverin leads to the extrusion of the fatty acid. Here we present nuclear magnetic resonance (NMR), fluorescence, and calcium-binding studies of a myristoylated recoverin mutant (myr-E85Q) designed to abolish high-affinity calcium binding to EF-2 and thereby trap the myristoylated protein with calcium bound solely to EF-3. Equilibrium calcium-binding studies confirm that only one Ca2+ binds to myr-E85Q under the conditions of this study with a dissociation constant of 100 microM. Fluorescence and NMR spectra of the Ca2+-free myr-E85Q are identical to those of Ca2+-free wild type, indicating that the E85Q mutation does not alter the stability and structure of the Ca2+-free protein. In contrast, the fluorescence and NMR spectra of half-saturated myr-E85Q (one bound Ca2+) look different from those of Ca2+-saturated wild type (two bound Ca2+), suggesting that half-saturated myr-E85Q may represent a structural intermediate. We report here the three-dimensional structure of Ca2+-bound myr-E85Q as determined by NMR spectroscopy. The N-terminal myristoyl group of Ca2+-bound myr-E85Q is sequestered within a hydrophobic cavity lined by many aromatic residues (F23, W31, Y53, F56, F83, and Y86) resembling that of Ca2+-free recoverin. The structure of Ca2+-bound myr-E85Q in the N-terminal region (residues 2-90) is similar to that of Ca2+-free recoverin, whereas the C-terminal region (residues 100-202) is more similar to that of Ca2+-bound wild type. Hence, the structure of Ca2+-bound myr-E85Q represents a hybrid between the structures of recoverin with zero and two Ca2+ bound. The binding of Ca2+ to EF-3 leads to local structural changes within the EF-hand that alter the domain interface and cause a 45 degrees swiveling of the N- and C-terminal domains, resulting in a partial unclamping of the myristoyl group. We propose that Ca2+-bound myr-E85Q may represent a stable intermediate state in the kinetic mechanism of the calcium-myristoyl switch.  相似文献   

7.
A microsomal activity of baby hamster kidney cells which cleaves ester-type bound fatty acids from acyl proteins in vitro has been characterized. This activity is also present in microsomal membranes from pig liver, calf kidney, and human mucous cells. Cell free deacylation is described for the Semliki Forest virus acyl proteins E1 and E2 and the precursor of E2 designated p62. Acyl chain cleavage operates with both exogenous and endogenous viral acyl protein substrates. The in vitro cleavage requires microsomes solubilized by detergents of which various kinds are equally effective (Nonidet P-40, Tween 20, sodium deoxycholate, Triton X-100, or octyl-beta-D-glucoside). If microsomes are boiled for 15 min prior to the incubation, deacylation is abolished completely and no radioactivity is released from the palmitoylated acyl proteins during incubation with either detergents or microsomes alone. No changes in the molecular structure of the deacylated Semliki Forest virus proteins were detected, and the cleavage product was identified as free fatty acid. Deacylation is time- and temperature-dependent and can be enhanced by increasing the concentration of microsomal protein in the incubation mixture. It is completely inhibited under acidic conditions (pH 5) and at low temperature (4 degrees C). Deacylation also occurs in the presence of EDTA and bivalent cations such as Mg2+, Mn2+, and Ca2+ which influence the reaction marginally. On the other hand, fatty acid release is drastically reduced with a mixture of Co2+, Zn2+, and Hg2+ ions. The activity is not identical with protein fatty acyltransferase operating in the reverse direction, since a partially purified preparation of this acyltransferase failed to cleave fatty acids from fatty acylated substrate proteins. Taken together, these data lead us to postulate an enzymatic activity which cleaves fatty acids from ester-type fatty acylated proteins, and we propose to designate this enzyme a protein fatty acylesterase.  相似文献   

8.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

9.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

10.
The interaction between free fatty acids and Ca2+-dependent ATPase, an intrinsic protein of sarcoplasmic reticulum membranes, was studied with relevance to the changes in membrane permeability induced by free fatty acids. It was found that only unsaturated fatty acids increase the permeability of reticulum membranes for Ca2+, this effect being completely reversible. The increase in the membrane permeability by fatty acids is coupled to a generation of a channel for Ca2+ efflux under effect of Ca2+-dependent ATPase. The interaction between fatty acids and Ca2+-dependent ATPase was demonstrated by the protein fluorescence and electron paramagnetic resonance methods, using spin-labelled fatty acid derivatives. A model demonstrating the increase of sarcoplasmic reticulum membrane permeability for Ca2+ in the presence of the fatty acid-Ca2+-dependent ATPase complex is proposed.  相似文献   

11.
The fluorescence emission spectrum of dansylundecanoic acid is sensitive to the environment and appears at a lower wavelength when the fatty acid is bound to protein than when it is bound to phospholipid. When bound to the (Ca2+-Mg2+)-ATPase of sarcoplasmic reticulum, the emission spectrum can be resolved into separate components assigned to fatty acid bound to protein and to lipid. Efficiency of energy transfer from the tryptophan residues of the ATPase to dansylundecanoic is higher for protein-bound probe than for lipid-bound probe. Fluorescence titrations are consistent with three fatty acid binding sites per ATPase with a Kd of 7 microM, and these sites are postulated to occur at the protein-protein interface in ATPase oligomers. Fatty acid incorporated into the lipid component of the membrane appears to be bound outside the lipid annulus around the protein.  相似文献   

12.
We have analyzed the plasma membrane association of the SV40 large tumor antigen (large T) in SV40-transformed BALB/c mouse tumor cells (mKSA). Isolated plasma membranes were subfractionated: treatment with the non-ionic detergent Nonidet P40 (NP40) resulted in a NP40-resistant plasma membrane lamina, which could be further extracted with the zwitterionic detergent Empigen BB. Analysis of the different plasma membrane fractions revealed that only about one third of large T associated with isolated plasma membranes could be solubilized with NP40. The residual plasma membrane-associated large T was tightly bound to the NP40-resistant lamina of the plasma membrane from which it was released by treatment with the zwitterionic detergent Empigen BB. Further evidence for a specific interaction of a distinct subclass of large T with the plasma membrane was provided by showing that only T associated with the NP40-resistant lamina of the plasma membrane contained covalently bound fatty acid. Neither nuclear large T nor large T in the NP40-soluble plasma membrane fraction could be labeled with [3H]palmitic acid. Our results indicate that an acylated subclass of large T interacts specifically with a structure of the plasma membrane, suggesting that it might be involved in a membrane-dependent biological function.  相似文献   

13.
The effects of arachidonic acid and other fatty acids on mitochondrial Ca2+ transport were studied. Cis-unsaturated fatty acids generally strongly inhibited mitochondrial Ca2+ uptake, induced a net Ca2+ efflux, and thereby increased the extramitochondrial Ca2+ concentration, whereas trans-unsaturated fatty acids were ineffective. Saturated fatty acids exhibited slight activity at chain lengths from C(10) to C(14) only. The structure-activity relationship and the inability of some of the effective fatty acids such as palmitoleic and myristoleic acid to be metabolized to eicosanoids suggest that Ca2+ release was induced by the fatty acids themselves and resulted from changes in the mitochondrial membrane bilayer structure. There was a correlation between Ca2+-releasing potency and reduction of mitochondrial membrane potential, which is the main driving force for mitochondrial Ca2+ uptake. There were, however, considerable differences compared with the effects of lysophospholipids on the membrane potential. The mechanism of action of fatty acids may be that of a fluidizing effect on the hydrophobic core of the membrane, thereby modulating the activity of integral membrane proteins of the respiratory chain.  相似文献   

14.
S C Chow  M Jondal 《Cell calcium》1990,11(10):641-646
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol.  相似文献   

15.
The addition of 0.4-3 mM of cis-unsaturated fatty acids such as oleic acid (18:1) or linoleic acid (18:2) to intact rat adipocytes stimulated lipogenesis at 37 degrees C. Saturated or trans-unsaturated fatty acids were ineffective. Fluorescence photobleaching recovery studies performed under similar conditions indicated that the cis-unsaturated fatty acids do not alter lateral mobility of either a lipid probe or a general protein marker in the plasma membrane. A high concentration (7 mM) of Ca2+, which by itself has some stimulatory effect on lipogenesis, significantly potentiated the effect of oleic acid on this insulin-like activity. Measurement of 45Ca2+ binding by fat cells has indicated that cis-unsaturated (but not saturated) fatty acids increased 12- to 20-fold the amount of Ca2+ associated with the cells. The dependence of this effect on the fatty acid concentration correlates well with the effect of the fatty acid on the induction of lipogenesis. Our results suggest that cis-unsaturated fatty acids affect membrane organization in a manner which induces a significant increase in membrane associated or intracellular Ca2+. This increase may be responsible for inducing exocytotic-like processes which facilitate translocation of glucose transport activity from storage sites to the plasma membrane and thus produce an insulin-like effect.  相似文献   

16.
The rate of incorporation of oleic acid into isolated brush-border membranes was found to be considerably faster than methyl oleate incorporation under similar experimental conditions. The effects of fatty acids and methyl oleate incorporation on Ca2+ uptake and fluidity were monitored. Whereas treatment with 0.01-0.05 mM oleic acid corresponding to incorporations smaller than 90 nmol/mg protein enhanced Ca2+ transport, exposures to higher concentrations of this fatty acid corresponding to incorporations larger than 150 nmol/mg protein, decreased uptake of this cation. On the other hand, treatment with 0.01-0.2 mM methyl oleate corresponding to incorporations of up to 220 nmol/mg protein had only a stimulatory effect on the Ca2+ uptake. Oleic acid, linoleic acid and methyl oleate decreased the fluorescence anisotropy of membranes labelled with diphenylhexatriene in a dose-dependent manner. In contrast, palmitic acid had little or no effect on the diphenylhexatriene-reportable order of the membrane within the range of concentrations used. Monitored as a function of temperature, the anisotropy values showed a gradual melting for both the control and lipid-treated membranes. The results support the concept that saturated and cis-unsaturated fatty acids dissolve in different lipid domains and this in itself appears to be an important factor defining whether the biological function of the membrane is affected by the uptake. Incorporation of cis-unsaturated fatty acids in domains harboring the Ca2+ uptake process increases Ca2+ uptake in concert with increased diphenylhexatriene-monitored fluidity. However, when concentrations of such fatty acids in these domains become sufficiently great, the presence of a largely increased number of free carboxyl groups at the membrane surface causes inhibition of Ca2+ uptake.  相似文献   

17.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

18.
A number of plasma membrane glycoproteins of mammalian and protozoan origin are released from cells by phosphatidylinositol-specific phospholipase C. Some of these proteins have been shown to be attached to the lipid bilayer via a covalently linked, structurally complex glycophospholipid. Here we establish the existence of similarly linked glycoproteins in the yeast Saccharomyces cerevisiae. The most abundant of these is a tightly membrane-bound glycoprotein of 125 kd. The detergent-binding moiety of this protein can be removed by phosphatidylinositol-specific phospholipase C of bacterial origin or from Trypanosoma brucei. Metabolic labeling indicates that the protein contains covalently attached fatty acid and inositol. It also contains the cross-reacting determinant (CRD), an antigen found previously on the glycophospholipid anchor of protozoan and mammalian origin. Treatment of the protein with endoglycosidases F and H results in a 95-kd species. In the secretion mutant sec18, grown at 37 degrees C, the vesicular transport of glycoproteins is reversibly blocked between the rough endoplasmic reticulum and the Golgi apparatus. We find that sec18 cells, when grown at 37 degrees C, do add phospholipid anchors to newly synthesized glycoproteins. This indicates that these anchors are added in the rough endoplasmic reticulum.  相似文献   

19.
Interphotoreceptor retinoid-binding protein (IRBP) purified from monkey interphotoreceptor matrix contains relatively high concentrations of endogenous fatty acids, 6.51 mol/mol of protein. Sixty-five percent of the total fatty acid bound to IRBP was found to be noncovalently attached, with the remainder covalently bound. The fatty acids are not residual components of phospholipids or neutral lipids, as judged by microchemical methods. The major fatty acids bound to IRBP are: palmitic (35%), stearic (21%), palmitoleic (7%), oleic (29%), linoleic (6%) and docosahexaenoic acids (2%). These fatty acids account for about 90% of the total fatty acid bound to interphotoreceptor matrix proteins extracted with organic solvents. Thus, IRBP may function as an intercellular fatty acid carrier and may depend on the covalently bound fatty acids for anchoring in the outer leaflet of cell membranes.  相似文献   

20.
The organization of microtubule arrays in the plant cell cortex involves interactions with the plasma membrane, presumably through protein bridges. We have used immunochemistry and monoclonal antibody 6G5 against a candidate bridge protein, a 90-kD tubulin binding protein (p90) from tobacco BY-2 membranes, to characterize the protein and isolate the corresponding gene. Screening an Arabidopsis cDNA expression library with the antibody 6G5 produced a partial clone encoding phospholipase D (PLD), and a full-length gene was obtained by sequencing a corresponding expressed sequence tag clone. The predicted protein of 857 amino acids contains the active sites of a phospholipid-metabolizing enzyme and a Ca(2+)-dependent lipid binding domain and is identical to Arabidopsis PLD delta. Two amino acid sequences obtained by Edman degradation of the tobacco p90 are identical to corresponding segments of a PLD sequence from tobacco. Moreover, immunoprecipitation using the antibody 6G5 and tobacco BY-2 protein extracts gave significant PLD activity, and PLD activity of tobacco BY-2 membrane proteins was enriched 6.7-fold by tubulin-affinity chromatography. In a cosedimentation assay, p90 bound and decorated microtubules. In immunofluorescence microscopy of intact tobacco BY-2 cells or lysed protoplasts, p90 colocalized with cortical microtubules, and taxol-induced microtubule bundling was accompanied by corresponding reorganization of p90. Labeling of p90 remained along the plasma membrane when microtubules were depolymerized, although detergent extraction abolished the labeling. Therefore, p90 is a specialized PLD that associates with membranes and microtubules, possibly conveying hormonal and environmental signals to the microtubule cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号