首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandins (PGE2, PGF2 alpha) in the excurrent ducts of the male reproductive tract appear to be both modulators of ductal contractility for transport of spermatozoa and factors involved in the regulation of sperm maturation. To identify the tissue sites for the production of prostaglandins (PGs) in the excurrent ductal system, we have employed an immunohistochemical technique to localize prostaglandin H (PGH) synthase in the epididymis and vas deferens of the mouse. A mouse monoclonal antibody to PGH synthase was used and was shown to be specific for the mouse enzyme by Western blot analysis. In sexually mature mice, PGH synthase was primarily localized to the epithelium of the epididymis and vas deferens. Within the epididymal epithelium, immunoactivity appeared in all cell types of the initial segment, in a subpopulation of cells with predominantly apically oriented nuclei in the caput and corpus, and in low levels in the cauda. PGH synthase reactivity was the most intense in the epithelial cells of the vas deferens. PGH synthase was not detected in smooth muscle cells, spermatozoa, or luminal fluid. This study suggests that the epithelium of the excurrent ductal system of the mouse is the major site for PG production. The regionalization of PGH synthase to cells in the epididymis thought to be involved in the absorption of luminal fluid suggests that PGs may play a role in fluid and ion transport.  相似文献   

2.
The effect of intraoviductal embryos on endometrial receptivity was studied by intraendometrial and intrauterine embryo transfer. Five-week-old female ICR mice were mated after superovulation; a vaginal plug confirmed day 1 of pregnancy. On day 4 (90 h after hCG injection), blastocysts were collected and transferred to pseudopregnant female mice and to recipient mice in which the uterotubal junction had been ligated bilaterally on day 1 of pregnancy. Three embryos per uterine horn, a total of six embryos per recipient mouse at days 1-6, were transferred to the endometrium or uterine cavity and implantation and pregnancy rates were calculated. The implantation rate for intraendometrial embryo transfer to recipients of days 3, 5 and 6 was significantly higher for uterotubal junction-ligated mice (72.2, 20.8 and 9.7%, respectively) than for pseudopregnant mice (55.0, 8.3 and 0.0%, respectively). The implantation rate for intrauterine embryo transfer to recipients at days 2, 5 and 6 was significantly higher for uterotubal junction-ligated mice (11.1, 25.0 and 8.3%, respectively) than for pseudopregnant mice (0.0, 3.3 and 0.0%, respectively). Uterotubal junction-ligated mice achieved implantation and bore neonates by intrauterine embryo transfer on days 2 and 6, whereas no implantation was achieved in pseudopregnant mice. The difference in implantation rate could not be explained by a difference in progesterone concentration between the groups. The distribution of proliferating cells in the endometrium was also studied immunohistochemically by use of anti-proliferating cell nuclear antigen (PCNA) antibody in the recipient mice. PCNA-positive cells were more abundant in uterotubal junction-ligated mice and demonstrated a marked extension from the epithelium to the stroma over time, in contrast to those in pseudopregnant mice. These findings indicate that an intraoviductal embryo exerts a biological effect by sending a signal to the endometrial epithelium and stroma, thus facilitating endometrial receptivity to the embryo and improving the rate of implantation.  相似文献   

3.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

4.
In the present study, we examined by immunohistochemistry the cell-specific distribution of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) in the mouse uterus during the oestrous cycle and throughout the first 7 days of pregnancy. Paraffin-embedded tissue samples were immunostained using the avidin–biotin peroxidase technique and then examined by light microscopy. Our results showed that immunostaining for EGF was detected in the stroma but not in the luminal or glandular epithelium. A high concentration of EGF was detected in the stroma around the time of embryo implantation at days 3, 4 and 5 of pregnancy. The implanted embryo at day 7 of gestation showed immunostaining for EGF between the ectoderm and endoderm layers. The cell distribution pattern for PDGF was found to be different from that observed with EGF. Luminal and glandular epithelia displayed PDGF immunostaining throughout the first 7 days of pregnancy, with the highest intensity at days 4 and 5 of gestation. In contrast, no immunostaining was observed in the luminal and glandular epithelia at post-oestrus, dioestrus and pro-oestrus stages. However, a weak reaction started to appear at oestrus. The embryo at the blastocyst stage displayed a strong immunoreaction for antibody against PDGF. In addition, the decidual boundary zone surrounding the implanted embryo at days 5, 6 and 7 of gestation also showed an immunostaining for PDGF. The present observations demonstrate clearly the presence of EGF and PDGF in the mouse uterus in high concentrations at the peri- implantation period. Thus, our results, together with what is known about the effect of EGF and PDGF in controlling the growth, differentiation and activation of a variety of cell types, suggest a possible role for these growth factors during the preparation of the endometrium for implantation in controlling the proliferation activity of stromal and/or epithelial cells.  相似文献   

5.
In ruminants, both the endometrium and the conceptus (embryo and associated extraembryonic membranes) trophectoderm synthesizes and secretes prostaglandins (PG) during early pregnancy. In mice and humans, PGs regulate endometrial function and conceptus implantation. In Study One, bred ewes received intrauterine infusions of vehicle as a control (CX) or meloxicam (MEL), a PG synthase (PTGS) inhibitor from Days 8-14 postmating, and the uterine lumen was flushed on Day 14 to recover conceptuses and assess their morphology. Elongating and filamentous conceptuses (12 cm to >14 cm in length) were recovered from all CX-treated ewes. In contrast, MEL-treated ewes contained mostly ovoid or tubular conceptuses. PTGS activity in the uterine endometrium and amounts of PGs were substantially lower in uterine flushings from MEL-treated ewes. Receptors for PGE2 and PGF2 alpha were present in both the conceptus and the endometrium, particularly the epithelia. In Study Two, cyclic ewes received intrauterine infusions of CX, MEL, recombinant ovine interferon tau (IFNT), or IFNT and MEL from Days 10-14 postestrus. Infusion of MEL decreased PGs in the uterine lumen and expression of a number of progesterone-induced endometrial genes, particularly IGFBP1 and HSD11B1. IFNT increased endometrial PTGS activity and the amount of PGs in the uterine lumen. Interestingly, IFNT stimulation of many genes (FGF2, ISG15, RSAD2, CST3, CTSL, GRP, LGALS15, IGFBP1, SLC2A1, SLC5A1, SLC7A2) was reduced by co-infusion with MEL. Thus, PGs are important regulators of conceptus elongation and mediators of endometrial responses to progesterone and IFNT in the ovine uterus.  相似文献   

6.
7.
The specific cellular localization of prostaglandin endoperoxide (PGH) synthase was studied throughout the rat estrous cycle. Animals were necropsied at 1300 h on each day of the 4-day cycle, and an additional group was necropsied at 2300 h on proestrus. Ovaries were removed and processed for cellular identification of PGH synthase by immunohistochemistry. At all stages of the cycle, intense immunostaining was observed in newly formed corpora lutea. Luteal cells were immunoreactive, but the connective tissue centrum was unstained. Interstitial tissue contained heavily labeled cells, whereas the germinal epithelium exhibited faint staining. During estrus, metestrus, and diestrus, thecal cells from preantral and antral follicles contained PGH synthase immunoreactivity, but granulosa cells were unstained. Faint staining of mural granulosa cells was observed first in 78% of preovulatory follicles (less than 400-microns diameter) in ovaries collected on the afternoon of proestrus. After the luteinizing hormone surge, 95% of the preovulatory follicles exhibited PGH synthase staining. The percentage of immunoreactive granulosa cells in these preovulatory follicles increased 4-fold in ovaries collected at 2300 h on proestrus. The presence of ovarian PGH synthase throughout the rat estrous cycle and the changes in cellular localization may reflect the potential role of PGs in follicular and luteal function.  相似文献   

8.
The purpose of this study was to demonstrate the expression of nidogen-1 and nidogen-2 and their possible role in decidualization and implantation events during early pregnancy in rats. The tissue samples were examined from pregnant animals between gestational days 1-8 using immunocytochemistry. The uterine luminal epithelium, the glandular epithelium, and the myometrial smooth muscle cells stained strongly from gestational days 1-8 with both nidogen antibodies. At day 4 the decidual reaction areas began to appear in the stromal matrix and immunostaining of both nidogens revealed that the basement membrane of the surface epithelium was discontinuous. The differentiation of stromal cells into decidual cells was seen at gestational day 5 and both nidogens were weakly expressed in the decidualizing cells. At day 6, nidogen-2 immunoreactivity was higher in the primary decidual cells close to the embryo than nidogen-1, and during development of the decidual tissue both nidogens appeared in the endometrial stromal cells. At day 7, while expression of both nidogens declined in the primary decidual cells, their expression was markedly observed in the secondary decidual cells close to the myometrium. At day 8, expression of both nidogens was also observed to increase in the primary decidual cells. While nidogen-2 expression was seen in the parietal endoderm and primary ectoderm of the rat embryos at this developmental stage, nidogen-1 expression was only detected in the parietal endoderm. These results indicate that nidogen-1 and nidogen-2 could play important roles during embryogenesis, decidualization, and implantation in the endometrium of rat uterus.  相似文献   

9.
10.
11.
The aim of this study was to investigate the immunohistochemical distribution of laminin, vimentin and desmin during the implantation period in the rat since ECM remodelling and the expression of intermediate filaments (Ifs) is essential for successful decidualization and implantation. On day 4 of pregnancy, laminin was found in a few endometrial stromal cells (ESC), the basement membrane of the numerous endometrial blood vessels, in endometrial glands and as well as in the uterine epithelium. The localization of vimentin on day 4 of pregnancy was widespread in the ESC. However, desmin immunoreactivity was low in ESC on this day of pregnancy. On day 6 of pregnancy, laminin and vimentin were localized in the decidual area underlying luminal epithelium and around the implanting embryo. Additionally, desmin was found to be present densely in decidual cells of the anti-mesometrial region where implantation takes place. Finally, on day 8 of pregnancy, laminin was present in decidual and parietal endodermal cells, whereas vimentin was immunolocalized in primary and secondary decidual regions in the endometrium. In contrast, desmin was detected in some parts of the secondary decidual zone. In conclusion, these proteins could have crucial roles in decidualization and implantation.  相似文献   

12.
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During “window of implantation”, uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.  相似文献   

13.
The purpose of this study was to localize immunocytochemically a progesterone-dependent protein (PDP) and to determine PDP mRNA levels during the initial stage of the implantation period. Uterine tissue was collected from Day 0-18 postcoital animals. The tissue was processed for immunocytochemical localization of PDP, and the endometrial RNA was isolated and analyzed for PDP gene expression by slot-blot hybridization. PDP was detected immunocytochemically as early as Day 5 postcoitus in the epithelial cells of the deep uterine glands, and the intensity of immunostaining appeared to peak by Day 12 postcoitus. PDP was absent in the endometrium obtained from implantation sites after Day 16 postcoitus, but the synthesis of PDP was maintained in the endometrium obtained from nonimplantation sites. Immunogold electron microscopy demonstrated that PDP was present in electron-dense granules of the glandular epithelial cells. PDP mRNA was detectable in the endometrium at Day 5 postcoitus and peaked around Day 10 postcoitus. PDP mRNA was absent in the endometrium from implantation sites after Day 16 postcoitus, but was maintained in the endometrium from nonimplantation sites. In summary, the results of this study illustrate that PDP is synthesized within the epithelial cells of the deep uterine glands, packaged within membrane-bound secretory granules, and released into the uterine lumen. Also, the process of implantation alters the gene expression in a very localized way since PDP mRNA and PDP-positive granules were absent in the endometrial glands obtained from the implantation site within 1-2 days of the onset of implantation, whereas both PDP mRNA and PDP-positive granules were maintained in the endometrial glands from nonimplantation-site regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Scanning immunoelectron microscopy was applied to human endometrial epithelium for the first time to simultaneously determine epitope localisation and cellular architecture. The method was established using HMFG1, an antibody to a glycoform of the MUC1 mucin. This was chosen because of the potential importance of MUC1 in connection with endometrial receptivity. Biopsies of mid-secretory phase endometrium were labelled using HMFG1 and silver-enhanced, gold-conjugated secondary antibody was then visualised by back-scattered electron imaging. The method provided a highly specific localisation of the HMFG1 epitope to the ciliated and "ciliogenic" cells of the endometrial surface. In contrast, no reactivity was evident on the microvillous cells and endometrial pinopodes. The potential to integrate the study of the molecular and ultrastructural changes that occur in the endometrium by using scanning immunoelectron microscopy offers a powerful means of expanding our understanding of the adaptation of the endometrium in preparation for embryo implantation.  相似文献   

15.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

16.
During implantation, matrix metalloproteinases are believed to play roles in the tissue remodelling that accompanies decidualization in the endometrium and in embryo invasion. The objective of this study was to characterize further the expression of matrix metalloproteinases 2 and 9 in the mouse uterus during early pregnancy and oil-induced decidualization. mRNA encoding matrix metalloproteinase 2 was detected in pregnant uteri and uteri undergoing oil-induced decidualization by northern blot analyses. The steady-state concentrations of mRNA encoding matrix metalloproteinase 2 did not change significantly in implantation compared with inter-implantation areas on days 5-8 of pregnancy but were significantly lower in stimulated compared with non-stimulated uterine horns during artificially induced decidualization. mRNA encoding matrix metalloproteinase 9 was also detected in uteri undergoing oil-induced decidualization but not in pregnant uteri. Its concentration was significantly greater in uterine horns undergoing oil-induced decidualization compared with control horns. Immunoreactive matrix metalloproteinases 2 and 9 were detected in the uterus during early pregnancy and oil-induced decidualization by immunohistochemistry, localized to the endometrial stroma, but the staining progressively became weaker and was absent in areas that had undergone decidualization. By day 8 of pregnancy and 72 h after the induction of decidualization, matrix metalloproteinase 2 and 9 proteins remained mainly in the region of non-decidualized stromal cells adjacent to the myometrium. In implantation segments, they were also localized to the region of the trophoblast giant cells. The second objective of the present study was to determine whether endometrial stromal cells isolated from uteri sensitized for decidualization express matrix metalloproteinases 2 and 9. Northern blot analyses and gelatin zymography showed that these cultured cells expressed matrix metalloproteinase 2 and 9, and that transforming growth factor beta1 significantly increased matrix metalloproteinase 9 expression. The results of the present study further characterize matrix metalloproteinases 2 and 9 expression in the uterus during implantation and artificially induced decidualization.  相似文献   

17.
The human endometrium is incredibly dynamic, undergoing monthly cycles of growth and regression during a woman's reproductive life. Endometrial repair at the cessation of menstruation is critical for reestablishment of a functional endometrium receptive for embryo implantation; however, little is understood about the mechanisms behind this rapid and highly efficient process. This study utilized a functional mouse model of endometrial breakdown and repair to assess changes in endometrial vasculature that accompany these dynamic processes. Given that adult endometrial stem/progenitor cells identified in human and mouse endometrium are likely contributors to the remarkable regenerative capacity of endometrium, we also assessed label-retaining cells (LRC) as candidate stromal stem/progenitor cells and examined their relationship with endometrial vasculature. Newborn mouse pups were pulse-labeled with bromodeoxyuridine (BrdU) and chased for 5 wk before decidualization, endometrial breakdown, and repair were induced by hormonal manipulation. Mean vessel density did not change significantly throughout breakdown and repair; however, significantly elevated endothelial cell proliferation was observed in decidual tissue. Stromal LRC were identified throughout breakdown and repair, with significantly fewer observed during endometrial repair than before decidualization. A significantly higher percentage of LRC were associated with vasculature during repair than before decidualization, and a proportion were undergoing proliferation, indicative of their functional capacity. This study is the first to examine the endometrial vasculature and candidate stromal stem/progenitor cells in a functional mouse model of endometrial breakdown and repair and provides functional evidence suggesting that perivascular LRC may contribute to endometrial stromal expansion during the extensive remodeling associated with this process.  相似文献   

18.
19.
《Theriogenology》2013,79(9):2071-2086
Prostaglandins (PGs) are critical regulators of a number of reproductive processes, including embryo development and implantation. In the present study, prostacyclin (PGI2) synthase (PGIS) mRNA and protein expression, as well as 6-keto PGF (a PGI2 metabolite) concentration, were investigated in the pig uterus. Endometrial tissue and uterine luminal flushings were obtained on Days 4 to 18 of the estrous cycle and pregnancy. Additionally, conceptuses were collected and examined for PGIS mRNA expression and 6-keto PGF concentration. Regulation of PGI2 synthesis in the porcine endometrium by steroids, conceptus products, and cytokines was studied in vitro and/or in vivo. Endometrial PGIS protein level increased on Days 12 and 16 in pregnant but not in cyclic gilts. Moreover, higher PGIS protein expression on Day 12 of pregnancy was accompanied by a greater content of 6-keto PGF in the endometrium. The concentration of 6-keto PGF in uterine luminal flushings increased substantially on Days 16 and 18 in pregnant gilts and was higher than in cyclic animals. Greater PGIS mRNA expression and PGI2 metabolite concentration were detected in Day 12 and 14 conceptuses, respectively. Incubation of endometrial explants with conceptus-conditioned medium resulted in upregulation of PGIS protein expression and increased PGI2 secretion. Moreover, PGIS mRNA and protein expression were upregulated in the endometrium collected from gravid uterine horn on Day 14 of pregnancy. In summary, PGIS is differentially expressed in the endometrium of cyclic and pregnant gilts resulting in higher PGI2 synthesis in pregnant animals. Porcine conceptuses are important regulators of endometrial PGIS expression and PGI2 release during the implantation period.  相似文献   

20.
The equine embryo must signal its presence to the uterus for pregnancy to continue to term. Mobility of the conceptus throughout the uterus is crucial for its survival, and this action presumably permits the conceptus to transmit its antiluteolytic signal to the endometrium. Studies were completed to establish whether this unidentified antiluteolytic signal targets prostaglandin G/H synthase 2 (PGHS2), a rate limiting enzyme in converting arachidonic acid to prostaglandins (PGs). In the first study, quantitative RT-PCR was used to determine the relative abundance of PGHS2 mRNA in endometrium derived from estrous cyclic and pregnant mares on day 14 post-ovulation. PGHS2 mRNA abundance was substantially greater in endometrium from estrous cyclic mares. Additional studies were completed to better understand PGHS2 in equine endometrium. An estrogen and progesterone treatment regimen in ovariectomized mares was developed as a test model for detecting endometrial PGHS2 mRNA. Also, exposing endometrial explants to conceptus secretions (conditioned culture medium) decreased PGHS2 mRNA abundance whereas exposing explants to oxytocin increased PGHS2 mRNA abundance. Exposure to conceptus secretions also decreased PGF2α concentrations in explant-conditioned medium whereas oxytocin supplementation increased PGF2α concentrations in medium. These data support the hypothesis that PGHS2 is a target for the antiluteolytic signal produced by equine conceptuses during early pregnancy. Also, the endometrial explant culture system used for these studies can serve as a model for identifying and characterizing the maternal recognition of pregnancy factor in equids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号