首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Cdc2-cyclin B complex (named the M-phase-promoting factor, MPF) is well known to be a key regulator of G2-M transition in both mitosis and meiosis. However, MPF may have functions other than the cell cycle regulation, since its activity is detectable in post-mitotic (or post-meiotic) non-dividing cells. Cyclin B comprises several subtypes, but their functional differences are still unknown. Despite the established function of MPF during oocyte maturation, its role during spermatogenesis, where spermatogenic cells undergo drastic morphological changes after meiosis, remains to be elucidated. To address these issues, we have isolated cDNA clones encoding cyclins B1 and B2 from medaka testis and raised polyclonal antibodies against their products. Using these as probes, we examined the expression patterns of cyclins B1 and B2 in medaka testis at both mRNA and protein levels. Cyclin B1 and B2 mRNAs were expressed in all stages of spermatogenic cells except for spermatozoa, although the expression levels varied according to the spermatogenic stages. Cyclin B1 protein was expressed only in spermatogonia and spermatocytes at prophase and metaphase with a transient disappearance at anaphase. On the other hand, cyclin B2 protein was continuously expressed throughout spermatogenesis, even in spermatogonia and spermatocytes at anaphase and in post-meiotic spermatids and spermatozoa. The difference in their expression patterns suggests that cyclins B1 and B2 have distinct roles in medaka spermatogenesis; i.e., cyclin B1 controls the meiotic cell cycle, whereas cyclin B2 is involved in process(es) other than meiosis.  相似文献   

2.
3.
Spermatogonia in the mouse testis arise from early postnatal gonocytes that are derived from primordial germ cells (PGCs) during embryonic development. The proliferation, self-renewal, and differentiation of spermatogonial stem cells provide the basis for the continuing integrity of spermatogenesis. We previously reported that Pin1-deficient embryos had a profoundly reduced number of PGCs and that Pin1 was critical to ensure appropriate proliferation of PGCs. The current investigation aimed to elucidate the function of Pin1 in postnatal germ cell development by analyzing spermatogenesis in adult Pin1-/- mice. Although Pin1 was ubiquitously expressed in the adult testis, we found it to be most highly expressed in spermatogonia and Sertoli cells. Correspondingly, we show here that Pin1 plays an essential role in maintaining spermatogonia in the adult testis. Germ cells in postnatal Pin1-/- testis were able to initiate and complete spermatogenesis, culminated by production of mature spermatozoa. However, there was a progressive and age-dependent degeneration of the spermatogenic cells in Pin1-/- testis that led to complete germ cell loss by 14 mo of age. This depletion of germ cells was not due to increased cell apoptosis. Rather, detailed analysis of the seminiferous tubules using a germ cell-specific marker revealed that depletion of spermatogonia was the first step in the degenerative process and led to disruption of spermatogenesis, which resulted in eventual tubule degeneration. These results reveal that the presence of Pin1 is required to regulate proliferation and/or cell fate of undifferentiated spermatogonia in the adult mouse testis.  相似文献   

4.
Cyclin D2 was isolated as one of the genes expressed early in adipogenesis. The expression of cyclin D2 increased temporarily early on and then again late in the differentiation process. The expression of cyclin D1 and cyclin D3, the other D-type cyclins, was also transiently induced early during adipocyte differentiation. RNAi (RNA interference)-mediated knockdown of cyclin D1, D2, or D3 inhibited the differentiation of 3T3-L1 cells into lipid-laden adipocytes. Moreover, the knockdown of cyclin D1 or D3 significantly inhibited mitotic clonal expansion (MCE), while silencing of the cyclin D2 gene had a milder effect on MCE. Each of the D-type cyclins seems to play a crucial role in adipocyte differentiation by regulating MCE.  相似文献   

5.
Using subtractive hybridization and polymerase chain reaction, we developed a differential cloning system, the fragmented cDNA subtraction method, that requires only small amounts of materials. The cloning system was used to isolate several cDNA fragments expressed more abundantly in the premeiotic day 3 post-natal mouse testis than in the adult mouse testis. The isolated cDNA fragments included cDNA encoding the murine cyclin D2. Northern blot and in situ hybridization analyses revealed that, during testis development, cyclin D2 expression was most abundant in the neonatal proliferating Sertoli cells. Those type A spermatogonia that were thought to divide mitotically also expressed cyclin D2 mRNA. Other spermatogenic cells, such as mitotically arrested gonocytes in neonatal testis and meiotically dividing germ cells in adult testis as well as adult Sertoli cells, were negative for the cyclin D2 signal. Adult W/W v mutant mice lacking germ cells expressed cyclin D2 mRNA in terminally differentiated Sertoli cells. Elimination of germ cells other than the undifferentiated type A spermatogonia by treating wild-type mice with an anti-c- kit monoclonal antibody did not result in the expression of cyclin D2 in Sertoli cells. These results demonstrate that there are lineage- and developmental-specific expression patterns of cyclin D2 mRNA during mouse testis development. At the same time, it is suggested that primitive type A spermatogonia affect the cyclin D2 expression of Sertoli cells.  相似文献   

6.
During testis development, proliferation and death of gonocytes are highly regulated to establish a standard population of adult stem spermatogonia that maintain normal spermatogenesis. As Transforming Growth Factor beta (TGFbeta) can regulate proliferation and apoptosis, we investigated its expression and functions during testis development. We show that TGFbeta2 is only expressed in quiescent gonocytes and decreases gonocyte proliferation in vitro. To study the functions of TGFbeta2, we developed conditional mice that invalidate the TGFbeta receptor type II in germ cells. Most of the knock-out animals die during fetal life, but the surviving adults show a reduced pool of spermatogonial stem/progenitor cells and become sterile with time. Using an organ culture system mimicking in vivo development, we show higher proportions of proliferating and apoptotic gonocytes from 13.5 dpc until 1 dpp, suggesting a reduction of germinal quiescence in these animals. Conversely, a 24-hour TGFbeta2-treatment of explanted wild-type testes, isolated every day from 13.5 dpc until 1 dpp, increased the duration of quiescence.These data show that the TGFbeta signaling pathway plays a physiological role during testis development by acting directly as a negative regulator of the fetal and neonatal germ cell proliferation, and indicate that the TGFbeta signaling pathway might regulate the duration of germ cell quiescence and is necessary to maintain adult spermatogenesis.  相似文献   

7.
8.
Translocator protein (TSPO) is a high affinity 18 kDa drug- and cholesterol-binding protein strongly expressed in steroidogenic tissues where it mediates cholesterol transport into mitochondria and steroid formation. Testosterone formation by Leydig cells in the testis is critical for the regulation of spermatogenesis and male fertility. Male germ cell development comprises two main phases, the pre-spermatogenesis phase occurring from fetal life to infancy and leading to spermatogonial stem cell (SSC) formation, and spermatogenesis, which consists of repetitive cycles of germ cell mitosis, meiosis and differentiation, starting with SSC differentiation and ending with spermiogenesis and spermatozoa formation. Little is known about the molecular mechanisms controlling the progression from one germ cell phenotype to the next. Here, we report that testicular germ cells express TSPO from neonatal to adult phases, although at lower levels than Leydig cells. TSPO mRNA and protein were found at specific steps of germ cell development. In fetal and neonatal gonocytes, the precursors of SSCs, TSPO appears to be mainly nuclear. In the prepubertal testis, TSPO is present in pachytene spermatocytes and dividing spermatogonia. In adult testes, it is found in a stage-dependent manner in pachytene spermatocyte and round spermatid nuclei, and in mitotic spermatogonia. In search of TSPO function, the TSPO drug ligand PK 11195 was added to isolated gonocytes with or without the proliferative factors PDGF and 17β-estradiol, and was found to have no effect on gonocyte proliferation. However, TSPO strong expression in dividing spermatogonia suggests that it might play a role in spermatogonial mitosis. Taken together, these results suggest that TSPO plays a role in specific phases of germ cell development.  相似文献   

9.
Germ cell and embryonic stem cells are inextricably linked in many aspects. Remarkably both can generate all somatic cell types in organisms. Yet the molecular regulation accounting for these similarities is not fully understood. Cyclin K was previously thought to associate with CDK9 to regulate gene expression. However, we and others have recently shown that its cognate interacting partners are CDK12 and CDK13 in mammalian cells. We further demonstrated that cyclin K is essential for embryonic stem cell maintenance. In this study, we examined the expression of cyclin K in various murine and human tissues. We found that cyclin K is highly expressed in mammalian testes in a developmentally regulated manner. During neonatal spermatogenesis, cyclin K is highly expressed in gonocytes and spermatogonial stem cells. In adult testes, cyclin K can be detected in spermatogonial stem cells but is absent in differentiating spermatogonia, spermatids and spermatozoa. Interestingly, the strongest expression of cyclin K is detected in primary spermatocytes. In addition, we found that cyclin K is highly expressed in human testicular cancers. Knockdown of cyclin K in a testicular cancer cell line markedly reduces cell proliferation. Collectively, we suggest that cyclin K may be a novel molecular link between germ cell development, cancer development and embryonic stem cell maintenance.  相似文献   

10.
We cloned cyclin B1, B2, and B3 cDNAs from the eel testis. Northern blot analysis indicated that these cyclin B mRNAs were expressed and increased from day 3 onward after the hormonal induction of spermatogenesis, and that cyclin B3 was most dominantly expressed during spermatogenesis. In situ hybridization showed that cyclin B1 and B2 were present from the spermatogonium stage to the spermatocyte stage. On the other hand, cyclin B3 mRNA was present only in spermatogonia. Although mouse cyclin B3 is expressed specifically in the early meiotic prophase, these results indicate that eel cyclin B3 expression is limited during spermatogenesis to spermatogonia, but is not present in spermatocytes. These facts together suggest that eel cyclin B3 is specifically involved in spermatogonial proliferation (mitosis), but not in meiosis.  相似文献   

11.
Previously, we found that the poly(A)+ RNA of the scaffolding subunit A (alpha isoform) of protein phosphatase 2A (PP2A-Aalpha) was clearly expressed by fetal gonocytes but weakly expressed by adult single (As), paired (Apr), and aligned (Aal) A spermatogonia. The scaffolding subunit A of PP2A (PP2A-A) is the major subunit in the formation of a functional PP2A holoenzyme. In this study, we investigated the expression of PP2A-A during testicular development in more detail using in situ hybridization, immunohistochemistry, and Western blot with testes of rats of various ages from 16 days postcoitum (pc) to adulthood. The expression of PP2A-A was detected in fetal proliferative gonocytes at 16 days pc, declining thereafter during the quiescent period of the gonocytes. From the day of birth to the start of spermatogenesis (Day 4 postpartum [pp]), the number of PP2A-A-immunopositive gonocytes increased. At Day 4 pp, the first A1 spermatogonia appeared along the basement membrane; all were PP2A-A positive. In the adult, PP2A-A was upregulated during the differentiation of the As, Apr, and Aal spermatogonia to the A1 spermatogonia and expressed thereafter by all other spermatogonia. Spermatocytes from the pachytene stage onward and all spermatids in the adult testis also showed clear expression of PP2A-A. In Sertoli cells, PP2A-A was detected during their proliferative period at 19 days pc to 15 days pp. The presence of a functional enzyme was confirmed by the additional detection of the catalytic subunit C of PP2A using Western blot analyses at various ages during testicular development. This apparent pattern of expression of PP2A-A during testicular development suggests that PP2A may play an important role in the proliferation of distinct populations of testicular cells and during meiosis and sperm maturation.  相似文献   

12.
The ubiquitin proteasome system (UPS) consists of a cascade of enzymatic reactions leading to the ubiquitination of proteins, with consequent degradation or altered functions of the proteins. Alterations in UPS genes have been associated with male infertility, suggesting the role of UPS in spermatogenesis. In the present study, we questioned whether UPS is involved in extensive remodeling and functional changes occurring during the differentiation of neonatal testicular gonocytes to spermatogonia, a step critical for the establishment of the spermatogonial stem cell population. We found that addition of the proteasome inhibitor lactacystin to isolated gonocytes inhibited their retinoic acid-induced differentiation in a dose-dependent manner, blocking the induction of the spermatogonial gene markers Stra8 and Dazl. We then compared the UPS gene expression profiles of Postnatal Day (PND) 3 gonocytes and PND8 spermatogonia, using gene expression arrays and quantitative real-time PCR analyses. We identified 205 UPS genes, including 91 genes expressed at relatively high levels. From those, 28 genes were differentially expressed between gonocytes and spermatogonia. While ubiquitin-activating enzymes and ligases showed higher expression in gonocytes, most ubiquitin conjugating and deubiquitinating enzymes were expressed at higher levels in spermatogonia. Concomitant with the induction of spermatogonial gene markers, retinoic acid altered the expression of many UPS genes, suggesting that the UPS is remodeled during gonocyte differentiation. In conclusion, these studies identified novel ubiquitin-related genes in gonocytes and spermatogonia and revealed that proteasome function is involved in gonocyte differentiation. Considering the multiple roles of the UPS, it will be important to determine which UPS genes direct substrates to the proteasome and which are involved in proteasome-independent functions in gonocytes and to identify their target proteins.  相似文献   

13.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by the differentiation of a transient population of germ cells called gonocytes found in the center of the seminiferous tubule. The fate of gonocytes depends upon these cells resuming mitosis and developing the capacity to migrate from the center of the seminiferous tubule to the basement membrane. This process begins approximately Day 3 postpartum in the mouse, and by Day 6 postpartum differentiated type A spermatogonia first appear. It is essential for continual spermatogenesis in adults that some gonocytes differentiate into spermatogonial stem cells, which give rise to all differentiating germ cells in the testis, during this neonatal period. The presence of spermatogonial stem cells in a population of cells can be assessed with the use of the spermatogonial stem cell transplantation technique. Using this assay, we found that germ cells from the testis of Day 0-3 mouse pups can colonize recipient testes but do not proliferate and establish donor-derived spermatogenesis. However, germ cells from testes of Day 4-5 postpartum mice colonize recipient testes and generate large areas of donor-derived spermatogenesis. Likewise, germ cells from Day 10, 12, and 28 postpartum animals and adult animals colonize and establish donor-derived spermatogenesis, but a dramatic reduction in the number of colonies and the extent of colonization occurs from germ cell donors Days 12-28 postpartum that continues in adult donors. These results suggest spermatogonial stem cells are not present or not capable of initiating donor-derived spermatogenesis until Days 3-4 postpartum. The analysis of germ cell development during this time frame of development and spermatogonial stem cell transplantation provides a unique system to investigate the establishment of the stem cell niche within the mouse testis.  相似文献   

14.
Initiation of the first wave of spermatogenesis in the neonatal mouse testis is characterized by differentiation of a transient population of germ cells called gonocytes in the center of the seminiferous tubules. After resuming mitotic activity, gonocytes relocate on the basement membrane, giving rise to spermatogonial stem cells (SSCs). These processes begin from birth in mice, and differentiated type A spermatogonia first appear by day 6 postpartum. During these processes, Sertoli cells within the seminiferous tubules and Leydig cells in the interstitial tissue form the stem cell “niche,” and influence SSC fate decisions. Thus, we collected whole mouse testis tissues during the first wave of spermatogenesis at specific time points (days 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 postpartum) and constructed a comparative proteomic profile. We identified 252 differentially expressed proteins classified into three clusters based on expression, and bioinformatics analysis correlated each protein pattern to specific cell processes. Expression patterns of nine selected proteins were verified via Western blot, and cellular localizations of three proteins with little known information in testes were further investigated during spermatogenesis. Taken together, the results provide an important reference profile of a functional proteome during neonatal mouse gonocyte and SSC maturation and differentiation.  相似文献   

15.
D-type Gl cyclins are the primary cell cycle regulators of G1/S transition in eukaryotic cells, and are differentially expressed in a variety of cell lines in vitro. Little is known, however, about the expression patterns of D-type G1 cyclins in normal mouse in vivo. Thus, in the present study, tissue-specific expressions of cyclin D1 and D3 genes were examined in several tissues derived from adult male mice, and stage-specific expression of cyclin genes was studied in brain, liver, and kidney of developing mice from embryonic day 13 to postnatal day 11. Cell cycle-dependent expression of cyclins was also examined in regenerating livers following partial hepatectomy. Our results indicate that (l) cyclins Dl and D3 are expressed in a tissue-specific manner, with cyclin Dl being highly expressed in kidney and D3 in thymus; (2) cyclin D3 mRNA is abundantly expressed in young proliferating tissues and is gradually reduced during development, whereas cyclin Dl mRNA fluctuates during development; and (3) compensatory regeneration of liver induces cyclin Dl gene expression 12 hr after partial hepatectomy, and cyclin D3 gene expression from 36 to 42 hr (at the time of G1/S transition). In conclusion, this study indicates that cyclin D1 and D3 genes are differentially expressed in vivo in a tissue-specific, developmental stage-dependent, and cell cycle-dependent manner. © 1996 Wiley-Liss, Inc.  相似文献   

16.
While cloning maize D-type cyclins previously reported in databases (described as of D1, D2 and D4 types), a fourth D cyclin was cloned that showed high homology (75%) with the D1 cyclin. Because this D1 cyclin has been recently described as a D5-type cyclin (D5;1), the new cyclin was named D5;2. All maize cyclins have been compared among themselves and among D cyclins from other plant species. All maize D cyclins possess the retinoblastoma protein–binding motif and cyclin boxes but no PEST sequences or destruction box sequences are required for protein degradation. D5 and D2 cyclins also have canonical cyclin-dependent kinase (Cdk)–phosphorylation sites. Every cyclin showed a different expression pattern during seed germination, standing out cyclin D5;2, which seems to be expressed only during the early stages (equivalent to postmitotic interphase), and cyclin D4;1, which progressively accumulates from an almost undetectable level in dry seed embryo axes. Phytohormones like cytokinins and auxins, which accelerate the germination process, change the expression pattern of all cyclins, with cytokinins promoting an increase in expression during the early hours of germination (by 6 h), whereas auxins promote a constant increase in the levels of three out of the four D cyclins (except D5;1). Cyclin D5;1 is the least expressed of all cyclins in all tissues measured (embryo axes, seedlings and plantlets), and all cyclins are expressed in both meristematic and non-meristematic tissues. We discuss their relevance for the germination process and plantlet establishment.  相似文献   

17.
D-type cyclins are important regulatory proteins of the G1/S phase of the cell cycle however, their specific functions are only partially understood. We show that silencing of individual D-type cyclins has no effect on the proliferation and morphology of Immortalized non-tumorigenic human epidermal (HaCaT) cells, while double and triple D cyclin silencing results in the failure of the cytokinesis leading to the appearance of large multinucleated cells. Both CDC20 and Ki67 mRNA is downregulated in these cells. Ki67 mRNA silenced cells show similar multinucleated cellular phenotype as double or triple D cyclin silenced cells without affecting D cyclin expression, suggesting that Ki67 is necessary for normal G2/M transition. Our data have revealed that cyclin D1 may have a leading role in G1/S phase regulation and suggest an incomplete functional overlap among D cyclins. Our results indicate that beside their well-known functions during the G0-G1/S phase, D-type cyclins play a pivotal role in the regulation of mitosis via influencing Ki67 expression in a downstream manner probably through E2F1 activation in HaCaT cells.  相似文献   

18.
D-type cyclins regulate G1 cell cycle progression by enhancing the activities of cyclin-dependent kinases (CDKs), and their expression is frequently altered in malignant cells. We and others have previously shown that cyclin D1 is up-regulated in melanoma cells through adhesion-independent MEK-ERK1/2 signaling initiated by mutant B-RAF. Here, we describe the regulation and role of cyclin D3 in human melanoma cells. Cyclin D3 expression was enhanced in a cell panel of human melanoma cell lines compared with melanocytes and was regulated by fibronectin-mediated phosphatidylinositol 3-kinase/Akt signaling but not MEK activity. RNA interference experiments demonstrated that cyclin D3 contributed to G1-S cell cycle progression and proliferation in melanoma cells. Overexpression of cyclin D1 did not recover the effects of cyclin D3 knockdown. Finally, immunoprecipitation studies showed that CDK6 is a major binding partner for cyclin D3, whereas CDK4 preferentially associated with cyclin D1. Together, these findings demonstrate that cyclin D3 is an important regulator of melanoma G1-S cell cycle progression and that D-type cyclins are differentially regulated in melanoma cells.  相似文献   

19.
Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth   总被引:1,自引:0,他引:1  
Regulation of adult beta-cell mass in pancreatic islets is essential to preserve sufficient insulin secretion in order to appropriately regulate glucose homeostasis. In many tissues mitogens influence development by stimulating D-type cyclins (D1, D2, or D3) and activating cyclin-dependent kinases (CDK4 or CDK6), which results in progression through the G(1) phase of the cell cycle. Here we show that cyclins D2 and D1 are essential for normal postnatal islet growth. In adult murine islets basal cyclin D2 mRNA expression was easily detected, while cyclin D1 was expressed at lower levels and cyclin D3 was nearly undetectable. Prenatal islet development occurred normally in cyclin D2(-/-) or cyclin D1(+/-) D2(-/-) mice. However, beta-cell proliferation, adult mass, and glucose tolerance were decreased in adult cyclin D2(-/-) mice, causing glucose intolerance that progressed to diabetes by 12 months of age. Although cyclin D1(+/-) mice never developed diabetes, life-threatening diabetes developed in 3-month-old cyclin D1(-/+) D2(-/-) mice as beta-cell mass decreased after birth. Thus, cyclins D2 and D1 were essential for beta-cell expansion in adult mice. Strategies to tightly regulate D-type cyclin activity in beta cells could prevent or cure diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号