首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One predominant 55-kDa polypeptide was phosphorylated in vitro in Trypanosoma cruzi homogenates prepared from three differentiation stages: epimastigotes, trypomastigotes, and spheromastigotes. Anti-alpha and anti-beta tubulin monoclonal antibodies immunoprecipitated the phosphorylated 55-kDa polypeptide from epimastigote extracts. Phosphoserine was the only residue phosphorylated in vitro in the 55-kDa polypeptide and in immunoprecipitated alpha tubulin. The phosphorylation of both the 55-kDa polypeptide and exogenously added casein was inhibited with GTP, heparin, and 2,3-bisphosphoglycerate in a dose-dependent manner, indicating the involvement of a CK2-like protein kinase. Moreover, when tubulin was isolated from an epimastigote homogenate by ultracentrifugation, followed by DEAE-Sephacel chromatography, a protein kinase that phosphorylated tubulin and casein co-purified with this cytoskeletal component. This result suggests an association between tubulin and its corresponding protein kinase in T. cruzi.  相似文献   

2.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

3.
The evolution of the humoral responses of IgG and IgM against 29-35-kDa Toxoplasma gondii fractions from experimentally infected goats were studied and compared by ELISA with the use of whole T. gondii soluble extracts and 29-35-kDa electroeluted proteins as antigens. The IgM response to electroeluted proteins was detected from wk 1 to wk 3 postinfection, showing a similar evolution to that observed when T. gondii crude extracts were used as antigens. These results suggest that this group of proteins could be used for a more specific detection of anti-T. gondii IgM. In the same way, the IgG response was equivalent in both cases, although when 29-35-kDa T. gondii fractions were used as antigens, the level of specific IgGs reached a peak 2 wk before than when T. gondii crude extract was used. The detection by ELISA of anti-T. gondii IgM in goats does not seem to be affected by the presence of specific IgG in serum samples when 29-35-kDa protein fractions were used as antigens.  相似文献   

4.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai , actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

5.
A set of monoclonal antibodies that recognizes a Trypanosoma cruzi 45-kDa protein was produced and used to characterize this molecule and study its role in trypanosome adhesion to heart myoblasts. We found that the 45-kDa protein is a surface mucin, is expressed only in invasive trypomastigotes, but not in noninvasive epimastigotes or amastigotes, and is released by the trypanosome in culture medium. One of the monoclonal antibodies (Mab B5) from this set inhibits the attachment of trypomastigotes to heart myoblasts preventing trypanosome entry, whereas the others (Mabs B4 and F1) do not. This inhibition was seen with the B5 hybridoma culture supernatant, with the purified Mab B5 IgG or with Mab B5 Fab fragments. These novel findings identify the 45-kDa mucin as a new T. cruzi ligand that is used by invasive forms of this organism to adhere to heart myoblasts.  相似文献   

6.
Investigation of protease activities during the transformation of Trypanosoma cruzi epimastigotes into metacyclic trypomastigoes (metacyclo-genesis) revealed three major components with apparent molecular weights of 65, 52, and 40 kDa. The 65-kDa protease is a metacyclic trypomastigote stage-specific protease with an isoelectric point of 5.2 whose activity is inhibited by 1,10-phenanthroline, suggesting that it might be a metalloprotease. The 52-kDa component is also a metalloprotease which is constitutively expressed in epimastigotes and metacyclic trypomastigoes. On the other hand, the 40-kDa component is apparently made up of several isoforms of a cysteine protease which is expressed in much higher levels in epimastigotes than in metacyclic trypomastigote forms. The fact that the 65- and 40-kDa proteases are developmentally regulated suggests that proteases might be important for T. cruzi differentiation. Accordingly, T. cruzi metacyclogenesis is blocked by metallo- and cysteine-protease inhibitors.  相似文献   

7.
In this study, the presence of actin in cultured trypanosomatids was investigated using polyclonal antibodies to heterologous actin. Polyclonal antisera to rabbit muscle actin and a monospecific anti-actin antibody react with a 43-kDa polypeptide in extracts of Trypanosoma cruzi, Herpetomonas samuelpessoai and Leishmania mexicana amazonensis on protein immunoblots. The 43-kDa polypeptide co-migrates with skeletal muscle actin and is retained within trypanosomatid cytoskeletons. Attempts to isolate H. samuelpessoai actin through DNase I affinity chromatography showed that the 43-kDa polypeptide did not bind to the column. Instead, low yields of a 47-kDa polypeptide were obtained indicating that the trypanosomatid actin displays unusual DNase I binding behavior when compared to actins from higher eukaryotes. Immunofluorescence studies confirmed that cytoskeletons retain the actin-like protein. In H. samuelpessoai, actin is localized in the region close to the flagellum, whereas in T. cruzi it is more homogeneously distributed. The data presented here show that trypanosomatid actin displays biochemical characteristics similar to actins of other protozoa.  相似文献   

8.
We previously reported that group D streptococci exhibited immunoglobulin G (IgG)-binding activity and that a 52-kDa IgG-binding protein was present in all Streptococcus suis strains examined (B. Serhir, R. Higgins, B. Foiry, and M. Jacques, J. Gen. Microbiol. 139:2953-2958, 1993). The objective of the present study was to purify and characterize this protein. Pig IgG were immobilized through their Fab fragments to ECH-Sepharose 4B, and the protein was purified by affinity chromatography. Electron microscopy observations of the purified material showed filamentous structures with a diameter of approximately 4 nm; these structures were not observed when the material was treated with either urea or ethanolamine. Electrophoretic and Western immunoblot analyses showed that the 52-kDa protein constituted the bulk of the recovered material. This protein was stained with either Coomassie brilliant blue or silver nitrate; it reacted with a large variety of mammalian IgG, human IgG (Fc) fragments, human IgA, and other human plasma proteins. The 52-kDa protein exhibited lower IgG-binding affinities than protein A and protein G. However, it was able to compete with protein A and protein G for binding to human IgG. In addition, it bound chicken IgG with high affinity. This last property differentiated the 52-kDa protein of S. suis from the six IgG-binding proteins described to date. The 52-kDa protein displayed similar affinities for untreated and deglycosylated pig IgG. The N-terminal amino acid sequence (SIITDVYAXEVLDSXGNPTLEV) revealed no homology with any bacterial proteins in the Swiss-Prot database. Its isoelectric point of approximately 4.6 and its amino acid composition, rich in aspartic and glutamic acids, showed that it had some similarities with other IgG-binding proteins. In this report, we have purified and characterized a 52-kDa IgG-binding protein from S. suis capsular type 2. Although this protein shares some similarities with other IgG- and/or IgA-binding proteins, it is unique in reacting with chicken IgG.  相似文献   

9.
Isotypic analysis of anti-parasite humoral responses of C57B1/6 and C3H (He) mice surviving acute Trypanosoma cruzi infection showed that both mouse strains demonstrate IgG1, IgG2a, IgG2b, and IgM enzyme-linked immunosorbent assay titers from days 21 to 300 of infection. Using the western blot technique to determine the antigen specificity of the isotypic responses, 100-day infected C3H mice showed strong IgG1, IgG2a, and IgG2b responses to many antigens, whereas C57B1/6 mice showed weak responses to fewer antigens. Isotype western blots showed that reactivity to the T. cruzi antigen of 75-77 kDa is present in the humoral response of day 21-infected mice that will survive and missing in those that will not survive. In general, surviving immunized C3H mice respond with IgG1, IgG2a, and IgG2b reactions to the 75-77-kDa and other antigens, whereas resistant B6 mice concentrate their anti-T. cruzi response in the IgG2b isotype to the 75-77-kDa antigen. Perhaps induction of ineffective antibody responses to nonprotective antigens is beneficial to the parasite and detrimental to the host.  相似文献   

10.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

11.
12.
An estrogen-regulated 52-kDa glycoprotein secreted by MCF7 breast cancer cells was first purified from serum-free conditioned medium by concanavalin-A--Sepharose (ConA--Sepharose). The 13% pure protein was then used to obtain monoclonal antibodies to the 52-kDa protein [Garcia et al. (1985) Cancer Res. 45, 709-716]. Using ConA--Sepharose and monoclonal antibody affinity chromatographies, the secreted 52-kDa protein was finally purified to homogeneity as verified by silver staining of sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and one single N-terminal amino acid. The purification factor was approximately 1400 and the yield 40%. The same two-step procedure, applied to MCF7 cell extracts, yielded four immunologically related proteins of 52 kDa, 48 kDa, 34 kDa and 17 kDa, which were purified 1250-fold with a yield of 30%. These components were further separated by high-performance liquid chromatography gel filtration under denaturing conditions. The final products were homogeneous on the basis of silver-stained SDS-PAGE and gel filtration. However, isoelectrofocusing showed that the pI of the secreted 52-kDa protein and the cellular 34-kDa protein varied from 5.5 to 6.5. Amino acid analysis of the secreted and the related cellular 34-kDa protein is given. Western immunoblotting, pulse chase studies and post-translational studies indicate that the 52-kDa protein is the precursors of a lysosomal enzyme which is partially secreted and partially processed into smaller cellular forms.  相似文献   

13.
The development of the representation of differential expression method has lead to the cloning of Trypanosoma cruzi stage-specific genes. We used this method to characterize a multicopy gene family differentially expressed during metacyclogenesis. The genomic and cDNA clones sequenced encoded three short cysteine-rich polypeptides, of two types, with predicted molecular masses of 7.1, 10.4, and 10.8 kDa. We searched GenBank for similar sequences and found that the sequences of these clones were similar to that encoding the wheat germ agglutinin protein. The region of similarity corresponds to the chitin-binding domain, with eight similarly positioned half-cysteines and conserved aromatic residues involved in chitin recognition. Multiple copies of the genes of this family are present on a high- molecular-mass chromosome. We studied the expression of genes of this family during metacyclogenesis by determining messenger RNA (mRNA) levels. The mRNAs for the members of this gene family were present in the total RNA fraction but were mobilized to the polysomal fraction of adhered (differentiating) epimastigotes during metacyclogenesis, with a peak of accumulation at 24 of differentiation. Polyclonal antisera were raised against a recombinant protein and a synthetic peptide. The specific sera obtained detected 7- and 11-kDa proteins in T. cruzi total protein extracts. The 11-kDa protein was present in similar amounts in the various cell populations, whereas the 7-kDa protein displayed differential synthesis during metacyclogenesis, with maximal levels in 24-h-adhered (differentiating) epimastigotes.  相似文献   

14.
We have identified previously a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin protein family involved in thiol-disulphide redox reactions. Furthermore, we have reported that Tc52 also played a role in T. cruzi-associated immunosuppression observed during Chagas' disease. In an effort to understand further the biological role of Tc52, we used a gene-targeted deletion strategy to create T. cruzi mutants. Although T. cruzi tolerates deletion of one wild-type Tc52 allele, deletion of both genes is a lethal event, indicating that at least one active Tc52 gene is required for parasite survival. Monoallelic disruption of Tc52 (Tc52+/-) resulted in the production of T. cruzi lines that express less Tc52 mRNA and produced lower amounts of Tc52 protein compared with wild-type cells. In axenic cultures, growth rates of epimastigote forms bearing an interrupted allele were not different from those of wild-type parasites. Furthermore, monoallelic disruption of the Tc52 gene did not modify the growth rate of epimastigotes or their sensitivity to inhibition by benznidazole and nifurtimox, the two drugs used to treat Chagasic patients. Moreover, the antimonial drug SbIII, which is known, at least in Leishmania parasites, to be conjugated to a thiol and extruded by an ATP-coupled pump, had a similar effect on wild-type and mutant parasites, being equally sensitive. Hence, parasite drug sensitivity was also observed in clones overexpressing the Tc52 protein as well as in those carrying an antisense plasmid construct. Surprisingly, a significant impairment of the ability of epimastigotes carrying a Tc52 single gene replacement or antisense construct to differentiate into metacyclic trypomastigotes and to proliferate in vitro and in vivo was observed, whereas no significant enhancement of these biological properties was seen in the case of parasites that overexpress Tc52 protein. Moreover, functional complementation of Tc52+/- single mutant or selection of antisense revertant clones demonstrated that the phenotype observed is a direct consequence of Tc52 gene manipulation. Taken together, these results may suggest that Tc52 could participate among other factors in the phenotypic expression of T. cruzi virulence.  相似文献   

15.
The degradation of cat immunoglobulin G (IgG) in blood-fed adult C. felis midguts was examined. SDS-PAGE analysis of dissected midgut extracts obtained from C. felis that had been blood fed for various times between 0 to 44 h revealed that by 24 h most of the high molecular weight proteins, including the heavy chain of IgG, were digested. A 31-kDa serine protease with IgG degrading activity was purified from fed C. felis midguts by benzamidine affinity chromatography, hydrophobic interaction chromatography, and cation exchange chromatography. Three primary cleavage products between 30- and 40-kDa were observed when the purified protease was incubated with protein A purified cat IgG. N-terminal amino acid sequence analysis of the products revealed that the IgG degrading protease cleaves after specific cysteine and lysine residues within the hinge region of IgG. The enzyme is also capable of degrading other immunoglobulins, serum albumin, and hemoglobin, suggesting that it may have roles in both combating the host's immune system and providing nutrients for the flea. A cDNA clone encoding the 265 amino acid IgG degrading protease proenzyme was isolated. When expressed in a baculovirus/insect cell expression system, the recombinant protein had the same N-terminus as the processed 237 amino acid mature native protein and possessed IgG degrading activity indistinguishable from the native protein. Arch. Insect Biochem.  相似文献   

16.
Stage-specific mAb have been produced to amastigotes and epimastigotes of Trypanosoma cruzi (Brazil strain). mAb C-1 through C-6 reacted specifically with T. cruzi strains; no cross-reactions were found with membranes of promastigotes or amastigotes of Leishmania species. One mAb produced against the epimastigote membranes (C-5) was found to be specific against this stage by radioimmune binding assay, immunofluorescence, and radioimmunoprecipitation. mAb C-5 recognized a novel epimastigote protein at Mr (greater than 200,000) on immunoprecipitation with radiolabeled epimastigotes. Three amastigote stage-specific monoclonal antibodies were produced against membrane-enriched preparations of T. cruzi (Brazil strain) amastigotes grown in axenic culture (C-1 through C-3). By indirect immunofluorescence assay, monoclonal antibody C-2 bound only to T. cruzi amastigotes; no reaction with either tissue culture-derived trypomastigotes or epimastigotes was observed. mAb C-1 and C-2 each specifically immunoprecipitated a single protein molecule with Mr 83,000 from [35S]-methionine-labeled amastigotes. mAb C-2 was also used to affinity purify an 83-kDa Ag that was recognized by human Chagasic sera from patients of endemic countries of Latin America in an enzyme immunoassay. Amino acid composition and preliminary sequence data of the 83-kDa protein are presented. These mAb and/or purified Ag may be useful in studying stage differentiation, monitoring transformation, and for further taxonomic, epidemiologic, and immunologic studies of Chagas' disease.  相似文献   

17.
Clathrin is a scaffold protein found in different types of coated vesicles in most eukaryotic cells. Major forces that drive clathrin coat formation are the adaptor protein complexes. Trypanosoma cruzi is a flagellate protozoan that ingests macromolecules through receptor-mediated endocytosis, but the molecules involved in this process are still poorly known. Bioinformatics was used to identify proteins in the T. cruzi genome database, permitting discrimination of the genes involved in clathrin coat assembly. Clathrin expression was demonstrated in T. cruzi epimastigotes by using several experimental approaches. Western blot analysis showed a single 180-kDa protein band, which corresponds to the molecular mass of mammalian clathrin heavy chain. A flow cytometry assay demonstrated that the clathrin heavy chain was expressed in 97.74% of the cell population analyzed, with a high-fluorescence signal. Immunofluorescence observation showed labeling clustered at the flagellar pocket and Golgi complex region. Coated vesicles budding off from the flagellar pocket and the trans Golgi network membranes were identified by transmission electron microscopy. Our data demonstrate the expression of clathrin in T. cruzi epimastigotes and show the association of this polypeptide with the parasite endocytic and exocytic pathways.  相似文献   

18.
We have used glutaraldehyde-fixed target cells to study the attachment phase of cell invasion by live trypomastigotes of Trypanosoma cruzi, and determined that attachment is polarized and receptor-mediated. T. cruzi trypomastigotes bind much less efficiently to confluent epithelial cells, which are polarized, than to sparse epithelial cells. When the tight junctions of confluent epithelial cells are disrupted by removing Ca2+ from the incubation medium before glutaraldehyde fixation, binding of T. cruzi increases. T. cruzi also shows preference for attachment underneath cells or to the edges of cells. The binding occurs within a few minutes, is saturable, and is influenced by the parasite developmental stage. Fab fragment derived from monoclonal antibodies that immunoprecipitate a 160-kDa molecule present only on the surface of trypomastigotes inhibit adhesion to fixed and live cells. Future characterization of the target cell receptors for this molecule and the use of fixed target cells should facilitate studies of the mechanisms involved in the initial interaction of T. cruzi with its host cells.  相似文献   

19.
A 1.3 kb cDNA (cDNA52) was derived from Trypanosoma cruzi trypomastigote mRNA. Using single stranded probes in Northern blots, we identified the putative coding strand of cDNA52. In addition, a minor band was detected in RNA from epimastigotes that was absent in RNA from trypomastigotes. Nucleotide sequence analysis revealed that cDNA52 was highly homologous to T. cruzi kinetoplast DNA minicircle sequences. All four conserved regions of T. cruzi minicircles were identified in cDNA52. Using several criteria, we demonstrated that the hybridization signals were not caused by contaminating minicircle DNA in the RNA preparations. The data provide direct evidence for the unprecedented finding that the entire length of a kDNA minicircle is transcribed in T. cruzi.  相似文献   

20.
Susceptible C3H/He mice were immunized with the avirulent Corpus Christi strain of Trypanosoma cruzi and subsequently infected with virulent Brazil stain organisms. Seventy days after infection sera were isolated and analyzed on western blots of electrophoretically separated T. cruzi antigens prepared from culture-form parasites (primarily epimastigotes). More than 25 bands were identified. The antibodies were fractionated by elution from various regions of western blots corresponding to average molecular weights of approximately greater than 130, 77, 70, 60, 48, or 38 kDa. Each of these antibody preparations was then incubated with strips of nitrocellulose containing all of the electrophoretically separated T. cruzi, and cross-reactivity was determined. Antibodies isolated from the 130-, 77-, and 70-kDa regions all cross-reacted with each other. Antibodies eluted from the 60-kDa region bound antigens in the 60-, 70-, and the 77-kDa regions. More importantly, antibodies eluted from every region bound antigens in the 70-kDa region. Conversely, antibodies eluted from this region bound to antigens in all of the other regions. These data indicate the presence of (a) common antigenic epitope(s) in T. cruzi infections in these mice that is predominantly found in the 70-kDa antigen-antibody complex on western blots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号