首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A study was made of the involvement of superoxide anions in the aerobic reduction of tetrazolium salts by NAD(P)H and phenazine methosulphate (PMS). On the basis of experiments with superoxide dismutase two mechanisms of tetrazolium reduction could be distinguished-one in which fully reduced PMS (PMSH) is the reducer and one in which superoxide anion is the reducer of tetrazolium salts. It is proposed that superoxide anion is formed after a PMSH-PMS+ dismutation reaction. The relative contributions of the two distinct pathways to tetrazolium salt reduction are controlled by the PMS redox state and the oxygen tension. The consequences of the presence of superoxide anions and scavengers of superoxide anions for quantitative dehydrogenase cytochemistry are discussed.  相似文献   

2.
The source of superoxide anion radical (O2-.) in aerobic mixtures consisting of NAD[P]H, 5-methylphenazinium methyl sulfate (or its 1-methoxy derivative) and tetrazolium salt was investigated using superoxide dismutase (SOD), Mn(II), ferricytochrome-C, and epinephrine as probes. NAD[P]H + phenazine + O2 was found to reduce nitroblue tetrazolium, iodonitrotetrazolium, and thiazolyl blue in a manner sensitive to agents that dismutase O2-., viz., SOD and Mn(II). It also mediated the reduction of ferricytochrome-C, and augmented the autooxidation of epinephrine to the adrenochrome, without a tetrazolium salt present in the medium. The autooxidation of epinephrine, but not the reduction of ferricytochrome-C, was found to be sensitive to SOD. Nitroblue tetrazolium, either singly or in combination with SOD, did not stimulate the reduction of ferricytochrome-C. The oxidation of NADH, mediated by a catalytically low concentration of phenazine(+O2), was augmented two-fold by SOD. These observations are consistent with, and lend support to, a scheme of redox events (Scheme-3) wherein it is proposed that the source of O2-. in the NAD[P]H + phenazine + tetrazolium(+O2) system is the reduced phenazine, that the tetrazoinyl radical (a one-electron reduction product of tetrazolium) may not reduce O2 to O2-., that the redox reaction between semiquinone radicals of phenazine and O2 is reversible, and that the disproportionation of semiquinone radicals constitutes an important rate-limiting reaction in the expression of phenazine redox couple.  相似文献   

3.
The general features of the reduction of nitroblue tetrazolium chloride (NBT) by NADH and phenazine methosulphate (PMS) have been studied under aerobic and anaerobic conditions. Under aerobic condition the reduction appears to be mediated through the intermediate formation of the superoxide anion radical O2-.; this reaction is strongly inhibited by superoxide dismutase and by a number of O2-. scavengers such as propyl gallate, (+)-catechin, manganous ions, reduced glutathione and benzoquinone. Cupric ions inhibited the overall reaction by reoxidising reduced PMS. Under anaerobic conditions, superoxide dismutase had only a small inhibitory action and, with the exception of cupric ions, the other substances mentioned above were ineffective as inhibitors. The data presented show that the use of NBT to detect the presence of O2-. is fraught with difficulties due to an equally rapid reduction of NBT by NADH and PMS under anaerobic conditions.  相似文献   

4.
Using female Acanthocheilonema viteae we have investigated the bioreduction of the tetrazolium reagent XTT (2,3-bis(2-methoxy-4-nitro-sulphonyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide). Unlike the formazan formed by other tetrazolium salts, that derived from XTT readily diffuses out of A. viteae in vitro. Formazan formation can therefore be quantified by direct absorbance reading of the incubation medium, eliminating the need for a DMSO solubilization step. Optimum assay conditions involved a 4 h incubation, in the presence of the electron coupling agent phenazine methosulphate (PMS). Repeat 4 h incubations with XTT-PMS were well tolerated by worms for 5 consecutive days. This confirmed the low toxicity of XTT formazan and its usefulness in the semi-continuous assessment of filarial viability. In comparison to our previously reported MTT (3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide)-reduction assay XTT-PMS reduction showed comparable drug sensitivity and accuracy, however XTT-PMS appears to be at least 10-15 times less efficiently reduced by A. viteae females. A possible application of the XTT assay using female Onchocerca volvulus is discussed.  相似文献   

5.
In this study we examined the kinetics of interaction between mouse peritoneal macrophages (MPH) or human blood monocytes (HBM) with intracellular (amastigote [AMA]) forms of Trypanosoma cruzi. In electron microscopy studies, AMA were seen bound to the surface of unelicited MPH after 5 min of interaction, i.e., when the first observations were made. Internalization was visible after 8 min, and the AMA were never seen outside of phagocytic vacuoles. Signs of AMA damage were first seen after 4 hr. Amastigote disintegration was commonly observed 12 hr after their initial contact with MPH. Similar results were obtained with HBM. These kinetic patterns of AMA uptake and destruction were in agreement with the results of quantitative assays in which the number of AMA contained by 200 MPH and the percentage of infected MPH were measured. The extent of the release of 3H-labeled materials from MPH that had phagocytosed [3H]AMA was approximately 10, 90, and 99% of the total ingested radioactivity after 4, 12, and 24 hr of incubation, respectively. A comparison of the kinetic patterns of MPH interaction with noninvasive AMA and invasive trypomastigote (TRY) forms showed that, after internalization, both the percentage of AMA-containing MPH and the number of AMA per 200 MPH declined dramatically over a 70-hr incubation period, whereas the percentage of MPH infected by the TRY remained virtually constant and the number of organisms per 200 cells increased markedly. This contrast indicated that the AMA had been destroyed, whereas the TRY had managed to survive, transform into AMA, and multiply within MPH. AMA killing by MPH involved H2O2 but not other intermediates of oxygen reduction, because it was inhibited by catalase but not by scavengers of O2, OH ., and 1O2. AMA lost their viability when incubated with glucose and glucose oxidase, confirming their sensitivity to H2O2. Thus, MPH and HBM have the potential for participating in the clearance of T. cruzi AMA from chagasic tissue lesions.  相似文献   

6.
The aquatic filamentous cyanobacteria Anabaena oscillarioides and Trichodesmium sp. reveal specific cellular regions of tetrazolium salt reduction. The effects of localized reduction of five tetrazolium salts on N(2) fixation (acetylene reduction), CO(2) fixation, and H(2) utilization were examined. During short-term (within 30 min) exposures in A. oscillarioides, salt reduction in heterocysts occurred simultaneously with inhibition of acetylene reduction. Conversely, when salts failed to either penetrate or be reduced in heterocysts, no inhibition of acetylene reduction occurred. When salts were rapidly reduced in vegetative cells, CO(2) fixation and H(2) utilization rates decreased, whereas salts exclusively reduced in heterocysts were not linked to blockage of these processes. In the nonheterocystous genus Trichodesmium, the deposition of reduced 2,3,5-triphenyl-2-tetrazolium chloride (TTC) in the internal cores of trichomes occurs simultaneously with a lowering of acetylene reduction rates. Since TTC deposition in heterocysts of A. oscillarioides occurs contemporaneously with inhibition of acetylene reduction, we conclude that the cellular reduction of this salt is of use in locating potential N(2)-fixing sites in cyanobacteria. The possible applications and problems associated with interpreting localized reduction of tetrazolium salts in cyanobacteria are presented.  相似文献   

7.
Intermediate electron-acceptors in quantitative cytochemistry   总被引:1,自引:0,他引:1  
Summary The efficacy of Meldola Blue (MB), a new intermediate electronacceptor, has been compared with that of phenazine methosulphate (PMS) in the assay of oxidoreductase activity in cryostat sections; various tetrazolium salts have been used as the final electron-acceptors. Three enzymes: succinate dehydrogenase, glucose 6-phosphate dehydrogenase and lactate dehydrogenase were investigated, the activity in sections being quantitated by scanning and integrating microdensitometry. Phenazine methosulphate was superior to Meldola Blue in transferring reducing equivalents from reduced coenzyme to all the tetrazolium salts examined.  相似文献   

8.
Despite widespread use of various tetrazolium assays, the mechanisms of bioreduction of these compounds have not been fully elucidated. We investigated the capacity of tetrazolium salts to penetrate through intact cell plasma membranes. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) tetrazolium salts appear to represent examples of species that are reduced by different mechanisms. We provide evidence suggesting that MTT readily crosses intact plasma membranes and is reduced intracellularly. MTT appears to be reduced by both plasma membrane and intracellular reductases; reducing cells are not damaged and remain metabolically active for at least 45 min. In contrast, CTC remains extracellular with respect to viable cells and thus requires plasma membrane permeable electron carrier to be reduced efficiently. However, reduction of CTC in the presence of an electron carrier inflicts damage on plasma membranes. The intracellular vs extracellular sites of reduction of tetrazolium salts were established on the basis of deposition of formazans. Crystals of formazan were detected using fluorescence or backscattered light confocal laser microscopy. We postulate that the capacity of a tetrazolium salt to cross intact plasma membranes constitutes an important experimental variable which needs to be controlled in order to correctly interpret the outcome of tetrazolium assays designed to measure cellular production of oxygen radicals, activity of mitochondrial, cytosolic, or outer membrane reductases, etc.  相似文献   

9.
In aerobic reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium, O2- production is mediated by the tetrazolium, not the phenazine. Thus, superoxide dismutase inhibited reduction of the tetrazolium, but when ferricytochrome c was substituted for the tetrazolium its reduction was not affected by this enzyme. Furthermore, NADH plus the phenazine did not accelerate the oxidation of epinephrine to adrenochrome unless the tetrazolium was present, and under those circumstances superoxide dismutase did inhibit adrenochrome formation. When the tetrazolium and ferricytochrome c were present simultaneously, addition of superoxide dismutase was seen to accelerate the reduction of the cytochrome. This is explainable by the reduction of O2- by the reduced phenazine, which thus competes with cytochrome c for the available O2-. When the O2- was eliminated by superoxide dismutase, more of the reduced phenazine was available for the direct reduction of cytochrome c.  相似文献   

10.
Hog thyroid plasma membrane preparations containing a Ca2+-regulated NADPH-dependent H2O2-generating system were studied. The Ca2+-dependent reductase activities of ferricytochrome c, 2,6-dichloroindophenol, nitroblue tetrazolium, and potassium ferricyanide were tested and the effect of these scavengers on H2O2 formation, NADPH oxidation and O2 consumption were measured, with the following results. 1. Thyroid plasma membrane Ca2+-independent cytochrome c reduction was not catalyzed by the NADPH-dependent H2O2-generating system. This activity was superoxide-dismutase-insensitive. 2.Of the three other electron scavengers tested, only K3Fe(CN)6 was clearly, but partially reduced in a Ca2+-dependent manner. 3. Though the NADPH-dependent reduction of nitroblue tetrazolium was very low and superoxide-dismutase-insensitive, nitroblue tetrazolium inhibited O2 consumption, H2O2 formation and NADPH oxidation, indicating that nitroblue tetrazolium inhibits the H2O2-generating system. We conclude that the thyroid plasma membrane H2O2-generating system does not or liberate O2- and that Ca2+ controls the first step (NADPH oxidation) of the H2O2-generating system.  相似文献   

11.
A study was undertaken to measure aerobic respiration by indigenous bacteria in a sand and gravel aquifer on western Cape Cod, MA using tetrazolium salts and by direct oxygen consumption using gas chromatography (GC). In groundwater and aquifer slurries, the rate of aerobic respiration calculated from the direct GC assay was more than 600 times greater than that using the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT). To explain this discrepancy, the toxicity of INT and two additional tetrazolium salts, sodium 3'-[1-(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), to bacterial isolates from the aquifer was investigated. Each of the three tetrazolium salts was observed to be toxic to some of the groundwater isolates at concentrations normally used in electron transport system (ETS) and viability assays. For example, incubation of cells with XTT (3 mM) caused the density of four of the five groundwater strains tested to decline by more than four orders of magnitude. A reasonable percentage (>57%) of cells killed by CTC and INT contained visible formazan crystals (the insoluble, reduced form of the salts) after 4 h of incubation. Thus, many of the cells reduced enough CTC or INT prior to dying to be considered viable by microscopic evaluation. However, one bacterium (Pseudomonas fluorescens) that remained viable and culturable in the presence of INT and CTC, did not incorporate formazan crystals into more than a few percent of cells, even after 24 h of incubation. This strain would be considered nonviable based on traditional tetrazolium salt reduction assays. The data show that tetrazolium salt assays are likely to dramatically underestimate total ETS activity in groundwater and, although they may provide a reasonable overall estimate of viable cell numbers in a community of groundwater bacteria, some specific strains may be falsely considered nonviable by this assay due to poor uptake or reduction of the salts.  相似文献   

12.
The effect of detergents on electron and proton transfer in bovine cytochrome c oxidase was studied using steady-state and transient-state methods. Cytochrome c oxidase in lauryl maltoside has high maximal turnover (TN(max)=400 s(-1)), whereas activity is low (TN(max)=10 s(-1)) in Triton X-100. Single turnover studies of intramolecular electron transfer show similar rates in either detergent. Transient proton uptake experiments show the oxidase in lauryl maltoside consumes 1.8+/-0.3 H(+)/aa(3) during either partial reduction of the oxidase or reaction of fully reduced enzyme with O(2). However, the oxidase in Triton X-100 consumes 2.6+/-0.4 H(+)/aa(3) during partial reduction and 1.0+/-0.2 H(+)/aa(3) in the O(2) reaction. Absorption spectra recorded during turnover show that the enzyme undergoes activation in lauryl maltoside, but does not activate in Triton X-100. We propose that cytochrome c oxidase in different detergents allows access to different sites of protonation, which in turn influences steady-state activity.  相似文献   

13.
The membrane-bound l-malate oxidoreductase of Azotobacter vinelandii strain O was found to be a flavoprotein-dependent enzyme associated with the electron transport system (R(3)) of this organism. The particulate R(3) fraction, which possessed the l-malate oxidoreductase, carried out the cyanide-sensitive oxidation of l-malate, d-lactate, reduced nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, succinate, cytochrome c, tetramethyl-p-phenylenediamine, and p-phenylenediamine, with molecular O(2) as the terminal electron acceptor. d-Malate was not oxidized, but l-malate was oxidized to oxalacetate. Phenazine methosulfate (PMS), vitamin K(3), K(3)Fe(CN)(6), nitro blue tetrazolium, and dichloroindophenol all served as good terminal electron acceptors for the l-malate oxidoreductase. Cytochrome c was a poor electron acceptor. Extensive studies on the l-malate oxidase and PMS and K(3) reductases revealed that all were stimulated specifically by flavine adenine dinucleotide and nonspecifically by di- or trivalent cations, i.e., Ca(++), Ba(++), Mn(++), Mg(++), Fe(+++), Ni(++), and Al(+++). All these activities were markedly sensitive to ethylenediaminetetraacetate (EDTA). The V(max) values for the l-malate oxidase, PMS, and vitamin K(3) reductases were, respectively, 3.4, 15.1, and 45.5 mumoles of substrate oxidized per min per mg of protein at 37 C. Spectral studies revealed that the Azotobacter R(3) flavoprotein and cytochromes (a(2), a(1), b(1), c(4), and c(5)) were reduced by l-malate. l-Malate oxidase activity was sensitive to various inhibitors of the electron transport system, namely, p-chloromercuriphenylsulfonic acid, chlorpromazine, 2-n-heptyl-4-hydroxyquinoline-N-oxide, antimycin A, and KCN. Minor inhibitory effects were noted with the inhibitors 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, rotenone, and Amytal.  相似文献   

14.
The mechanism of inhibition of the veratryl alcohol oxidase activity of lignin peroxidase H2 (LiPH2) by EDTA was investigated. It was found that EDTA was decarboxylated and that cytochrome c, nitro blue tetrazolium, ferric iron, and molecular oxygen were reduced in a reaction mixture containing LiPH2, H2O2, veratryl alcohol, and EDTA. The reductive activity observed with LiPH2 followed first order kinetics with respect to the concentration of EDTA. Stoichiometry studies showed that in the presence of sufficient EDTA, 1.7 mol of ferric iron were reduced per mole of H2O2 added to the reaction mixture. Superoxide- and EDTA-derived radicals were detected by ESR spin trapping upon incubation of LiPH2 with H2O2, veratryl alcohol, and EDTA. The Km values of veratryl alcohol and H2O2 remained the same for both the oxidative and reductive activities of LiPH2. Reductive activity was also observed with LiPH2 and EDTA using other free radical mediators in the place of veratryl alcohol, such as 1,4-dimethoxybenzene, 1,2,3- and 1,2,4-trimethoxybenzenes, and 1,2,4,5-tetramethoxybenzene. EDTA reduced the cation radical of 1,2,4,5-tetramethoxybenzene formed by LiPH2 in the presence of H2O2. Hence, it is proposed that the apparent inhibition of the veratryl alcohol oxidase activity of LiPH2 by EDTA is due to the reduction of the veratryl alcohol cation radical intermediate back to veratryl alcohol by EDTA. The reduction of cytochrome c, nitro blue tetrazolium, ferric ion, and molecular oxygen appears to be mediated by the EDTA radical formed by reduction of the veratryl alcohol cation radical.  相似文献   

15.
There was considerable variation between the sulfhydryl induced in vitro reduction of the oxidation-reduction indicators (2,3,5-triphenyltetrazolium chloride, 2,3-diphenyl 5-methyl tetrazolium chloride, neotetrazolium chloride, neotetrazolium phosphate-2B, blue tetrazolium, tetrazolium violet, potassium tellurite, methylene blue, and resazurin). The neotetrazolium salts and potassium tellurite showed the greatest reducing activity. The reduction of the indicators by oxidized sulfhydryl compounds in the presence of potassium cyanide closely paralleled the reduction of the sarrte indicators by reduced sulfhydryl compounds. Iodoacetamide was the most effective sulfhydryl inhibitor as demonstrated by indicator reduction.  相似文献   

16.
Summary In the presence of light, reduced nicotinamide adenine dinucleotide (NADH) and riboflavin formed a complex which was able to reduce certain tetrazolium salts. Neither NADH (10–3 M) nor riboflavin (10–4 M) alone was able to induce tetrazolium reduction in the presence of oxygen, but in a nitrogen atmosphere photoreduction of riboflavin induced reduction of tetrazolium salts. Only electrophilic nitro and thiazolyl substituted tetrazolium salts with more positive redox potentials were reduced by the NADH-riboflavin complex, and only monoformazans were produced from the ditetrazolium salts. The reduction kinetics of these tetrazolium salts are given, and the spectral area capable for induction of electron transfer in the NADH-riboflavin complex is screened. It is concluded that the electron transfer in flavin nucleotide dependent dehydrogenase systems will probably proceed without direct interference with the apoenzyme. This may have practical implications for the histochemistry of tetrazolium reductases especially as regards fixation. The catalytic action of light on tetrazolium reduction should also be taken into consideration when tetrazolium salts are used as electron acceptors in a histochemical reaction.  相似文献   

17.
L-Glutamate dehydrogenase (GLDH) independent of NAD(P) and oxygen was first obtained from the psychrotrophic bacterium Aeromonas sp. L101, originally isolated from the organs of salmon (Oncorhynchus keta). GLDH was purified by a series of chromatography steps on DEAE-Sepharose, Superdex 200pg, Q-Sepharose, CM-Sepharose, and Phenyl-Sepharose. The purified protein was determined to have a molecular mass of 110 kDa and a pI of 5.7. Maximum activity was obtained at 55 degrees C and pH 8.5. The activity of GLDH at 4 and 20 degrees C was 38 and 50%, respectively, of that at 50 degrees C. GLDH was coupled to cytochrome c and several redox dyes including 1-methoxy-5-methylphenazinium methylsulfate (1-Methoxy PMS), 2, 6-dichlorophenylindophenol (DCIP), 9-dimethylaminobenzo[alpha]phenoxazin-7-ium chloride (meldola's blue), 3,3'-[3,3'-dimethoxy-(1,1'-biphenyl)-4, 4'-diyl]-bis[2-(4-nitrophenyl)-5-phenyl-2H tetrazolium chloride] (nitroblue tetrazolium; NBT), and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H tetrazolium (INT). The presence of NAD(P) and oxygen gave no oxidation activity to GLDH. Spectroscopic profile and ICP data indicated a b-type cytochrome containing iron.  相似文献   

18.
Modified screen-printed electrodes for amperometric detection of H(2)O(2) and nicotinamide adenine dinucleotide (NADH) at low applied potential are presented in this paper. The sensors are obtained by modifying the working electrode surface with Prussian Blue, a well known electrochemical mediator for H(2)O(2) reduction. The coupling of this sensor with phenazine methosulfate (PMS) in the working solution gives the possibility of measuring both NAD(P)H and H(2)O(2). PMS reacts with NADH producing PMSH, which in the presence of oxygen, gives an equimolar amount of H(2)O(2). This allows the measurement of both analytes with similar sensitivity (357 mA mol(-1)L cm(-2) for H(2)O(2) and 336 mA mol(-1)L cm(-2) for NADH) and LOD (5x10(-7)mol L(-1) for H(2)O(2) and NADH) and opens the possibility of a whole series of biosensor applications. In this paper, results obtained with a variety of dehydrogenase enzymes (alcohol, malic, lactate, glucose, glycerol and glutamate) for the detection of enzymatic substrates or enzymatic activity are presented demonstrating the suitability of the proposed method for future biosensor applications.  相似文献   

19.
O2- generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1-. and O2- during enzyme-catalyzed reduction and O2+ coenzyme Q1-. are in equilibrium with O2- + coenzyme Q1 in the presence of enough O2. The coenzyme Q1-. produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2- generated, thereby preventing the reduction of coenzyme Q1 by O2-. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1-. is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M-1.s-1 at 258 microM O2, pH 7.5 and 25 degrees C.  相似文献   

20.
The reduction rate of mercuric ion to metallic mercury by a superoxide anion produced by a xanthine-xanthine oxidase system increased with an increased concentration of xanthine oxidase in the presence of enough xanthine. The reduction rate of mercuric ion by a superoxide anion in the presence of nitroblue tetrazolium (NBT) was proportional to the concentration of NBT. The result suggests that NBT was reduced to diformazan by a superoxide anion produced by a xanthine-xanthine oxidase system and that mercuric ion will be reduced to metallic mercury by diformazan. The reduction rate of mercuric ion was also indicative that a superoxide anion produced by an NADH-phenazine methosulfate (PMS) system increased with an increased concentration of PMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号