首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neiman AM 《Genetics》2011,189(3):737-765
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.  相似文献   

2.
Life cycle of the budding yeast Saccharomyces cerevisiae.   总被引:47,自引:4,他引:47       下载免费PDF全文
  相似文献   

3.
Lipid related diseases, such as obesity, type 2 diabetes, and atherosclerosis are epidemics in developed civilizations. A common underlying factor among these syndromes is excessive subcellular accumulation of lipids such as cholesterol and triglyceride. The homeostatic events that govern these metabolites are understood to varying degrees of sophistication. We describe here the utilization of a genetically powerful model organism, budding yeast, to identify and characterize novel aspects of sterol and lipid homeostasis.  相似文献   

4.
Aging and senescence of the budding yeast Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The budding yeast Saccharomyces cerevisiae has a limited life span, defined by the number of times an individual cell divides. Longevity in this organism involves a genetic component. Several morphological and physiological changes are associated with yeast aging and senescence. One of these, an increase in generation time with age, provides a 'biomarker' for the aging process. This increase in generation time has revealed the operation of a 'senescence factor(s)', which is likely to be a product of age-specific gene expression. The Cell Spiral Model indicates coordination of successive cell cycles to be inherent in the determination of life span. It is proposed that life expectancy depends on the function of a stochastic trigger during aging that sets in motion a programme leading to cell senescence and death.  相似文献   

5.
Mutations in the budding yeast Saccharomyces cerevisiae define regulatory activities both for the mitotic cell cycle and for resumption of proliferation from the quiescent stationary-phase state. In each case, the regulation of proliferation occurs in the prereplicative interval that precedes the initiation of DNA replication. This regulation is particularly responsive to the nutrient environment and the biosynthetic capacity of the cell. Mutations in components of the cAMP-mediated effector pathway and in components of the biosynthetic machinery itself affect regulation of proliferation within the mitotic cell cycle. In the extreme case of nutrient starvation, cells cease proliferation and enter stationary phase. Mutations in newly defined genes prevent stationary-phase cells from reentering the mitotic cell cycle, but have no effect on proliferating cells. Thus stationary phase represents a unique developmental state, with requirements to resume proliferation that differ from those for the maintenance of proliferation in the mitotic cell cycle.  相似文献   

6.
Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.  相似文献   

7.
The eukaryotic cell cycle is regulated at two points, the G1-S and G2-M boundaries. The molecular basis for these regulatory activities has recently been elucidated, in large part by the use of molecular and genetic analyses using unicellular yeast. The molecular characterization of cell-cycle regulation has revealed striking functional conservation among evolutionarily diverse cell types. For many eukaryotic cells, regulation of cell proliferation occurs primarily in the G1 interval. The G1 regulatory step, termed START, requires the activation of a highly conserved p34 protein kinase by association with a functionally redundant family of proteins, the G1 cyclins. Here we review studies using the genetically tractable budding yeast Saccharomyces cerevisiae, which have provided insight into the role of G1 cyclins in the regulation of START.  相似文献   

8.
When starved for nitrogen, cells of the yeast Saccharomyces cerevisiae produced abnormally small cells. Nonetheless, during starvation, only cells of a size characteristic of growing cells were capable of initiating a bud. Even when growth was severely limited, some event(s) in G1 required growth to a critical size for completion.  相似文献   

9.
Hu XH  Wang MH  Tan T  Li JR  Yang H  Leach L  Zhang RM  Luo ZW 《Genetics》2007,175(3):1479-1487
Uncovering genetic control of variation in ethanol tolerance in natural populations of yeast Saccharomyces cerevisiae is essential for understanding the evolution of fermentation, the dominant lifestyle of the species, and for improving efficiency of selection for strains with high ethanol tolerance, a character of great economic value for the brewing and biofuel industries. To date, as many as 251 genes have been predicted to be involved in influencing this character. Candidacy of these genes was determined from a tested phenotypic effect following gene knockout, from an induced change in gene function under an ethanol stress condition, or by mutagenesis. This article represents the first genomics approach for dissecting genetic variation in ethanol tolerance between two yeast strains with a highly divergent trait phenotype. We developed a simple but reliable experimental protocol for scoring the phenotype and a set of STR/SNP markers evenly covering the whole genome. We created a mapping population comprising 319 segregants from crossing the parental strains. On the basis of the data sets, we find that the tolerance trait has a high heritability and that additive genetic variance dominates genetic variation of the trait. Segregation at five QTL detected has explained approximately 50% of phenotypic variation; in particular, the major QTL mapped on yeast chromosome 9 has accounted for a quarter of the phenotypic variation. We integrated the QTL analysis with the predicted candidacy of ethanol resistance genes and found that only a few of these candidates fall in the QTL regions.  相似文献   

10.
《The Journal of cell biology》1989,109(6):3355-3366
Nuclear DNA movement in the yeast, Saccharomyces cerevisiae, was analyzed in live cells using digital imaging microscopy and corroborated by the analysis of nuclear DNA position in fixed cells. During anaphase, the replicated nuclear genomes initially separated at a rate of 1 micron/min. As the genomes separated, the rate of movement became discontinuous. In addition, the axis defined by the segregating genomes rotated relative to the cell surface. The similarity between these results and those previously obtained in higher eukaryotes suggest that the mechanism of anaphase movement may be highly conserved. Before chromosome separation, novel nuclear DNA movements were observed in cdc13, cdc16, and cdc23 cells but not in wild-type or cdc20 cells. These novel nuclear DNA movements correlated with variability in spindle position and length in cdc16 cells. Models for the mechanism of these movements and their induction by certain cdc mutants are discussed.  相似文献   

11.
The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clb1 clb3 clb4 triple mutant was viable, suggesting a key role for CLB2. The inviable multiple clb mutants appeared to have a defect in mitosis. Conditional clb mutants arrested as large budded cells with a G2 DNA content but without any mitotic spindle. Electron microscopy showed that the spindle pole bodies had duplicated but not separated, and no spindle had formed. This suggests that the Clb/Cdc28 kinase may have a relatively direct role in spindle formation. The two groups of Clbs may have distinct roles in spindle formation and elongation.  相似文献   

12.
The budding yeast Saccharomyces cerevisiae has two HSP90-related genes per haploid genome, HSP82 and HSC82. Random mutations were induced in vitro in the HSP82 gene by treatment of the plasmid with hydroxylamine. Four temperature-sensitive (ts) mutants and one simultaneously is and cold-sensitivie (cs) mutant were then selected in a yeast strain in which HSC82 had previously been disrupted. The mutants were found to have single base changes in the coding region, which caused single amino acid substitutions in the HSP82 protein. All of these mutations occurred in amino acid residues that are well conserved among HSP90-related proteins of various species from Escherichia coli to human. Various properties including cell morphology, macromolecular syntheses and thermosensitivity were examined in each mutant at both the permissive and nonpermissive temperatures. The mutations in HSP82 caused pleiotropic effects on these properties although the phenotypes exhibited at the nonpermissive temperature varied among the mutants.  相似文献   

13.
14.
15.
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.  相似文献   

16.
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.  相似文献   

17.
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.  相似文献   

18.
To investigate the nature of mutations induced by accelerated ions in eukaryotic cells, the effects of carbon-ion irradiation were compared with those of γ-ray irradiation in the budding yeast Saccharomyces cerevisiae.

The mutational effect and specificity of carbon-ion beams were studied in the URA3 gene of the yeast. Our experiments showed that the carbon ions generated more than 10 times the number of mutations induced by γ-rays, and that the types of base changes induced by carbon ions include transversions (68.7%), transitions (13.7%) and deletions/insertions (17.6%). The transversions were mainly G:C → T:A, and all the transitions were G:C → A:T. In comparison with the surrounding sequence context of mutational base sites, the C residues in the 5′-AC(A/T)-3′ sequence were found to be easily changed. Large deletions and duplications were not observed, whereas ion-induced mutations in Arabidopsis thaliana were mainly short deletions and rearrangements. The remarkable feature of yeast mutations induced by carbon ions was that the mutation sites were localized near the linker regions of nucleosomes, whereas mutations induced by γ-ray irradiation were located uniformly throughout the gene.  相似文献   


19.
Recent studies have uncovered the links between aging, rejuvenation and polar protein transport in the budding yeast Saccharomyces cerevisiae. Here, we examined a still unexplored possibility for co-regulation of polar mRNA transport and lifespan. To monitor the amount and distribution of mRNA-containing granules in mother and daughter cells, we used a fluorescent mRNA-labeling system, with MFA2 as a reporter gene. The results obtained showed that deletion of the selected longevity regulators in budding yeast had a significant impact on the polar mRNA transport. This included changes in the amount of mRNA-containing granules in cytoplasm, their aggregation and distribution between the mother and daughter cells. A significant negative correlation was found between strain-specific longevity, amount of granules and total fluorescent intensity both in mother and daughter cells. As indicated by the coefficient of determination, approximately 50–75% of variation in yeast lifespan could be attributed to the differences in polar mRNA transport.  相似文献   

20.

Background

Identifying permissible limits of intracellular parameters such as protein expression provides important information for examining robustness. In this study, we used the TEV protease-mediated induction of protein instability (TIPI) in combination with the genetic Tug-of-War (gTOW) to develop a method to measure the lower limit of protein level. We first tested the feasibility of this method using ADE2 as a marker and then analyzed some cell cycle regulators to reveal genetic interactions.

Results

Using TIPI-gTOW, we successfully constructed a strain in which GFP-TDegFAde2 was expressed at the lower limit, just sufficient to support cellular growth under the -Ade condition by accelerating degradation by TEV protease. We also succeeded in constructing a strain in which the minimal level of GFP-TDegFCdc20 was expressed by TIPI-gTOW. Using this strain, we studied genetic interactions between cell cycle regulators and CDC20, and the result was highly consistent with the previously identified interactions. Comparison of the experimental data with predictions of a mathematical model revealed some interactions that were not implemented into the current model.

Conclusions

TIPI-gTOW is useful for estimating changes in the lower limit of a protein under different conditions, such as different genetic backgrounds and environments. TIPI-gTOW is also useful for analyzing genetic interactions of essential genes whose deletion mutants cannot be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号